Magic’s Incremental Design-Rule Checker

George S. Taylor and John K. Ousterhout

Computer Science Division
Electrical Engineering and Computer Sciences Department
University of California
Berkeley, California 94720

ABSTRACT

The Magic VLSI layout ,editor contains an incremental design-rule checker.
When the circuit is changed, only the modified areas are rechecked. The
checker runs continuously in background to keep information about design-
rule violations up-to-date. This paper describes the basic rule checker, which
operates on edges in the layout, and the techniques used to perform incremen-
tal checking on hierarchical designs.

Keywords and Phrases: design-rule checking, interactive layout editor

Magic ’s Incremental Design-Rule Checker December 7, 1683

1. Introduction

Almost all existing design-rule checking (DRC) programs are batch
oriented [1] [2]. They read in a complete circuit layout and check the entire
design. If the circuit is changed, the only way to find out whether design rules
have been violated is to recheck the entire design, no matter how small the
change or how large the design. For chips with tens of thousands of transis-

tors, batch DRC run may require hours of computer time.

This paper describes a different approach to design-rule checking. As
part of the Magic VLSI layout editor (3], we have built a checker that operates
incrementally. When the layout is modified, Magic records which areas have
changed and rechecks only those areas. While the user continues editing, the
checker runs in background and highlights errors as it finds them. There is no
set-up time because it works from the same data structure used to represent
the layout. Since most changes made with the interactive editor are small and

the checker is fast, it can usually display errors instantly.

The user's view of design-rule checking is a simple one. As he edits the
circuit, small white dots appear over areas that contain layout errors. As soon
as the errors are fixed, the white dots go away. Error informaton is stored
with the design and it will reappear during the next editing session if the viola-
tion has not been fixed. This information is always kept up-to-date, so there is

never any need to run a batch checker.

Magic’s Incremental Design-Rule Checker December 7, 1983

In the next section, we describe Magic's internal representation for a lay-
out and explain how particular features contribute to fast incremental check-
ing. Section 3 describes how the basic checker works from edges in the layout
and how design rules are specified. Section 4 shows how we use the basic
checker for incremental checking of individual cells, and section 5 describes
how hierarchical designs are handled. Section 6 gives measurements of the

checker's speed.

2. Representation of a Layout

In Magic, a layout is represented as a hierarchical collection of cells.
Each cell contains mask information plus pointers to subcells. For now, we
will consider only a single cell at a time (Section 5 generalizes the solution to

handle hierarchical designs).

Magic represents the mask layers of a cell with rectangular ¢iles, which
means that it handles only Manhattan geometries. Each tile indicates the type
of mask layer it represents. Tiles are connected to form planes by a technique
called corner-stitching [2] illustrated in Figure 1. The tiles in a plane are
non-overlapping and cover it completely. Empty areas are covered with tiles
of type ‘‘space.”

Each cell contains several planes of mask information. Mask types that

interact (such as polysilicon and diffusion) are stored together in the same

Magic s Incremental Design-Rule Checker December 7, 1983

=5
« A A A
v L iy [WFS
] - a A
A4 . ey I—--)
“+ I 4]-1 A
v M ! “T A A
Y Y > P
-« - «— A
v v v >
|
“Q
v

Figure 1. An example of a corner-stitched plane. Each plane contains tiles of
different types that cover the entire area of the plane (space tiles are used where
there is no mask material). Each tile contains four pointers that link it to neighbor-
ing tiles at its corners. The pointers make it easy to find all the material in a given
area.

plane, while those that do not interact (such as polysilicon and metal) are
stored in different planes. Contacts between mask types on different planes are

represented in both of them. Our nMOS process has two planes: one for

metal and one for polysilicon, diffusion, and transistors.

Instead of working directly with physical mask layers, Magic uses absiract
layers to represent structures such as transistors and contacts. The abstract
lavers appear in the database as tiles with special types. For example, instead
of representing an enhancement transistor as a polysilicon tile over a diffusion
tile, it is represented with a tile of type “enhancement tramsistor.” A more
complete explanation of the abstract layers is given in {3]. What matters here
is that all the interesting features are represented explicitly: there is no need

to cross-register diffusion and polysilicon to discover the transistors.

Magic ‘s Incremental Design-Rule Checker December 7, 1983

The design-rule checker takes advantage of Magic’s database in three
ways. First, the corner-stitched tiles allow DRC to find material in 2 given
area very quickly. Second, division of mask information into planes allows the
checker to work with one plane at a time, ignoring irrelevant geometry on
other planes. Third, there is no need to extract features by registering layers:
the abstract layers represent the important features explicitly. Because of
these features, there is no need for the checker to manage a separate structure

of its own: it works directly from the layout database.

3. The Basic Checker

This section describes the basic design-rule checking paradigm used to
validate an area of a single corner-stitched plane. Later sections show how

this basic checker is used to perform incremental checks on a single cell, and

then on a hierarchy of cells.

3.1. Edge-based Rules

Magic's design rules are based on edges between tiles. Each rule can be
applied in any of four directions, two for horizontal edges and two for vertical
edges. The rule database contains a separate list of rules for each possible
combination of materials on the first and second sides of an edge. In its sim-
plest form, a rule specifies a distance and a set of mask types: only the given

types are permitted within that distance on the second side of the edge. This

Magic s Incremental Design-Rule Checker December 7, 1983

area is referred to as the constraint region. See Figure 2.

Ouly certain tile types are allowed

in the dashed constraint regions.

A
- d type 1
type 1 |[type 2 1
i M A
¢ t i {
[(1 d
1 ; type 2 |
— e e w m m - e e e = - v
«— 44— “—d—

Figure 2. Design rules are applied at the edges between tiles in the same plane. A
rule is specified in terms of type I and type 2, the materials on either side of the edge.
Each rule may be applied in any of four directions, as shown by the arrows. The
simplest rules require that only certain mask types can appear within distance d on
type 2's side of the edge.

Magic ‘s Incremental Design-Rule Checker December 7, 1983

Unfortunately, this simple scheme will miss errors in corner regions, as
shown in Figure 3. To eliminate these nroblems, the full rule format allows
the constraint region to be extended past the ends of the edge under some cir-
cumstances. See Figure 4 for an illustration of the corner rules and how they
work. Table 1 gives a complete summary of the information in each design

rule.

tile types allowed:

anything but poly

-------- - S
v z L s

poly spaceé 5 \
; poly

constraint

regions

(a) (b)

Figure 3. If only the simple rules from Figure 2 are used, errors may go unnoticed
in corner regions. For example, the polysilicon spacing rule in (a) will fail to detect
the error in (b).

Magic ’s Incremental Design-Rule Checker December 7, 18983

corner typeS’ I cormer extension Dot poly To
B x (ce) LB
“_ types allowed "‘_\’ not poly
type 1|type 2 poly |space
A | A
ey D s 4
d 2
(a) (b)
poly
poly not
poly €77 allowed §
—tpp —tp i poly not
: / allowed
(c) (d)

Figure 4. The complete design rule format is illustrated in (a). Whenever an edge
has type 1 on its left side and type 2 on its right side, the area A is checked to be
sure that only types allowed are present. If the material just above and to the left of
the edge is one of corner types, then area B is also checked to be sure that it con-
tains only types allowed. A similar corner check is made at the bottom of the edge.
Figure (b) shows one of the polysilicon spacing rules, (¢) shows a situation where
corner extension is performed on both ends of the edge, and (d) shows a situation
where corner extension is made only at the bottom of the edge.

Parameter | Meaning
type 1 Material on first side of edge.
type 2 Material on second side of edge.
d Distance to check on second side of edge.
layers List of layers that are permitted
allowed within d units on second side of edge.
corner List of layers that cause corner extension.
types
ce Amount to extend constraint area

when corner types match.

Table 1. The parts of an edge-based rule.

;]

Magic ‘s Incremental Design-Rule Checker December 7, 1983

3.2. Applying the Rules

To check an area of a single plane, Magic must first find all the edges in
that area. This is accomplished by searching for all the tiles in the area. The
corner-stitched data structure is well suited to searches of this sort: see [4].
For each tile, the checker examines its left and bottom sides (the top and right
sides of the tile will be checked by the neighbors on those sides). Since the tile
may have neighbors of different types on the same side, the checker searches
through all the neighbers to divide the side of the tile into edges with a single

material on each side.

To process an edge, the mask types on each side of it are used to index
into the rule table to find the list of rules for that kind of edge. Each rule in
the list is checked, and white dots are displayed for any areas where the con-
straints are not satisfied. For each edge there are two rule applications: left-
to-right and right-to-left (for vertical edges) or bottom-to-top and top-to-
bottom (for horizontal edges). A different list of rules is applied in each direc-

tion, since the layers are reversed.

3.3. Specifying Design Rules

Design rules are specified in a technology file that contains the rules and
other technology-specific information. When Magic starts executing, it reads
this file and builds the rule table. Initially we specified rules in the detailed

torm of Table I, with one line for each edge rule. This scheme proved to be

-R-

Magic ’s Incremental Design-Rule Checker December 7, 1983

unworkable, because there were many rules and it became difficult to convince

ourselves that the rule set was complete and correct.

In order to simplify the process of creating rule sets, Magic now permits
rules to be specified with high level macros for width and spacing. For exam-

ple, the macro
spacing ef DP 1

is expanded into several rules to verify that types e and { (enhancement and
depletion transistors) are always separated from types D and P (diffusion-metal

contacts and poly-metal contacts) by at least one unit. The macro
width pPBef 2

is expanded into the set of edge rules needed to verify that the entire region
containing any of the five types P, B, e, f or p (polysilicon) is always at least

two units wide.

Most of the rules for our processes are simple width and spacing checks,
so these two macros considerably simplify the writing of rule sets. Our nMOS
rule set contains 8 width rules, 6 spacing rules, and 9 of the detailed edge rules
for situations that cannot be handled by the width and spacing rules (e.g.
transistor overhangs). Magic expands these 23 high-ievel rules into 126
detailed edge rules. The complete high-level rule set for nMOS is given in the

Appendix.

Magic s Incremental Design-Rule Checker December 7, 1983

The width and spacing macros make Magic’s checker more efficient
because the width and spacing rules are symmetric. If layers x and y are too
close together, the violation can be detected from either an edge of x or an
edge of y. This means that it is unnecessary to check the rules from both
edges. Magic takes advantage of this symmetry by checking width and spac-
ing rules in only two directions (left-to-right and bottom-to-top). In addition,
symmetric rules mean that corner extension is only necessary on one end of
each edge. Since most of the detailed edge rules come from the width and

spacing macros, this speeds up the checking process by almost a factor of two.

4. Continuous Design-Rule Checking

This section shows how the basic checker is used to provide continuous
ineremental rule validation. As in the previous section, we consider only

single-cell designs here.

In order to perform DRC incrementally, Magic maintains two extra kinds
of information with each cell, stored in the same form as mask layers. First,
Magic keeps information about rule violations that have been detected but
haven't been corrected. The violations are represented by error tiles that
cover the areas where rule constraints are not satisfied. The second kind of
information consists of tiles describing the areas of the circuit that need to be

reveriied. The error tiles and the reverify tiles are stored in separate corner-

- 10 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

stitched planes. Each cell contains its own error and reverify planes.

When a designer changes a cell, Magic creates reverify tiles that cover the
area modified. The design-rule checker runs in background while Magic is
waiting for the designer to enter the next command. DRC first searches for
reverify tiles. Then it invokes the basic checker over the area covered by each
tile found. The basic checker reverifies the area on each of the cell’s planes,
updates error tiles, and erases the reverify tile. Changes to the error informa-

tion are reflected immediately on the graphics screen.

If the designer invokes a command while the checker is running, the
checker stops so that the command can be processed without delay. After the
command finishes, the checker resumes by starting over on the area that it
was working on just before the interruption. Large reverify tiles are broken
up into small ones before checking, in order to reduce the amount of work
that might have to be repeated. When there are large areas to be reverified,

Y

the checker works across the design in a style like “Pac-Man,” gobbling up

reverify tiles and spitting out error tiles.

If incremental checking is done carelessly, errors may not be detected
when new violations are introduced, and error information may be left in the
database even after the violations have been corrected. Figure 5 illustrates the
problem and Magic's solution. When an area is modified, error information

may be affected in both the area that was modified and in the surrounding

-11-

Magic ‘s Incremental Design-Rule Checker December 7, 1983

area (for example, material in area A may be too close to something in the sur-
rounding area B). We call the surrounding area the halo. Its width is equal to
the largest distance in any design rule. Error information must be recomputed
in the modified area and its halo. However, errors in the halo don't necessarily
involve the inner modified area. They may come from interactions between
the halo and a second halo outside it. To regenerate errors in the first halo

correctly, information in the second halo must be considered.

If area A of Figure 5 were modified, Magic would recheck it by deleting
all error information in A and B. The checker would then generate new error
information in both areas by invoking the basic checker over areas A, B and
C. Any errors found during this process would be clipped to the area of A and
B, so that error information outside the region where errors were erased would

not be affected.

first halo "'—_\“ B .

w
o
o
o
=]
a.
=
L3
o

Figure 5. If area A is modified, the design-rule checker erases existing error infor-
mation in both A and B. Errors in B could have come from information in A, B or
C, so all three areas must be checked to regenerate all of the errors. The width of
the halos B and C is equal to the largest distance in any design rule.

Magic’s Incremental Design-Rule Checker December 7, 1983

The reverify and error tiles are stored with cells so that they are not lost
at the end of an editing session. Normally, there will be no reverify tiles left at
the end of a session, but if a large area has been changed recently, it is possi-
ble that it won't have been reverified when the session ends. In this case, the
reverify tiles are written to disk with the cell. When the cell is read in during
the next editing session, the design-rule checker will notice the reverify tiles
and continue the reverification process. The reverify and error tiles are identi-
cal to the tiles used to represent mask layers, except that they are not manipu-

lated directly by the designer.

5. Hierarchical Checking

Most of the layouts created with Magic consist of hierarchical cell struc-
tures rather than single cells (Figure 6). Each cell may contain subcells, and
the subcells may overlap other subcells or mask information in the parent. A

subcell may be appear any number of times in any number of parents.
In hierarchical designs, errors can arise in any of three ways:
a) the mask information of an individual cell may be incorrect;
b) a subcell may interact incorrectly with another subcell: and
¢) asubcell may interact incorrectly with mask information in its parents.

Magic's incremental checker includes facilities to detect all of these errors.

Overlapping subcells are no more difficult to handle than subcells that merely

- 13-

Magic s Incremental Design-Rule Checker December 7, 1983

abut, because interaction errors are possible in either case.

5.1. Simple Checks and Interaction Checks

Two overall rules guide the hierarchical checker. First, the mask infor-
mation in every cell is required to satisfy the design rules by itself, without
consideration of subcells. Second, each cell and its subcells must together
satisfy all the design rules, without consideration of how that cell is used in its
parents. If the layout is viewed as a tree structure, the first rule means that
each node of the tree must be consistent, and the second rule means that each

subtree must be consistent.

Figure 8. Circuits are defined by cells arranged in a hierarchy. If mask information
is changed in a low-level cell, Magic checks to be sure that the cell is consistent by
itself and that there are no illegal interactions in parents or grandparents.

- 14 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

The overall rules result in two kinds of design-rule checking. The first
rule is verified by runmning the basic checker over the planes containing mask
information for each ceil; this is called a simple check. The second rule is
verified with an interaction check which considers interactions involving sub-
cells. Each cell uses separate planes to hold its mask information, so interac-

tion checks must combine information from different planes.

To make an interaction check on an area, the hierarchical structure is
“Hattened’’ to produce a new set of corner-stitched planes that combines all
the information from all cells in the area to be checked. This includes mask
information from the parent cell, plus mask information from subcells and
sub-subcells, and so on. Once all the mask information in the area has been
collected into a single set of planes, the basic checker is invoked on these
planes in the standard fashion (halo expansion is performed as described in
Section 4). Errbrs arising from the interaction check are placed in the parent

cell.

Interaction checks are more expensive than basic checks, since they
involve attening a piece of the hierarchy. Fortunately, interaction checks can
often be avoided. For example, if an area contains no subcells, then there is
no need to perform an interaction check on that area. A simple check will
find all errors. The interaction check can also be avoided if there is only a sin-

gle subcell in an area, with no other subcells or mask information nearbv. In

Magic ‘s Incremental Design-Rule Checker December 7, 1983

this case any errors must come from within the subcell, and those errors will
be found by checks made within that cell. Interaction checks are necessary
only in areas where a subcell is within one halo distance of mask information
or another subcell. Even then, we only need to check the the arez around the

interaction.

5.2. Checking Upward in the Hierarchy

When a cell is modified, simple checks and interaction checks have to be
performed within that cell, and also within its parents in the hierarchy. For
example, suppose mask information has been edited within a cell. Then a sim-
ple check must be performed within that cell, as well as an interaction check if
there are subcells near the modified area.. However, these two checks are not
sufficient. If the modified cell is a subcell of other higher-level cells, then the
change may have introduced interaction problems within the higher-level cells.
For each parent of the modified cell, an interaction check must be performed
over the area of the modification. Interaction checks must also be performed
in grandparents, and so-on up to the top-level cell in the hierarchy. In the cell
that was modified, both simple and interaction checks must be performed. but

in the parents and grandparents only interaction checks are necessary.

Magic uses two kinds of verify tiles to handle the two kinds of checks.
When a cell is modified, “verify-all”" tiles are placed in that cell to signify that

both simple and interaction checks must be nerformed. At the same time,

- 16 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

“verify-interactions’ tiles are placed in parents and grandparents to indicate
that interaction checks have to be performed. The background checker keeps
track of which cells in the database contain verify tiles and performs each kind

of check wherever necessary.

In the worst case, the hierarchical algorfthm could result in the modified
area being rechecked once at each level of the hierarchy above the cell that
was changed, with a separate flatten operation required for each check. How-
ever, in deep hierarchies most of the interaction checks are avoidable: in cells
far above the modified one, the modified area will almost certainly appear in
the middle of a single subcell with no mask information or other subcells
nearby. Unless there are many large subcell overlaps, any given area of mask
information is likely to require an interaction check at only one point in the

hierarchy.

5.3. Arrays

One other form of hierarchical check arises because Magic has an array
construct. To simplify the creation of cell arrays, Magic contains a special
array facility: each subcell may consist of either a single instance or a one- or
two-dimensional array of identical instances. Because of the array construct,
there is actually a third overall rule that guides the hierarchical checker: each
array must satisfy all the design rules, independently of other information in

the parent containing the array. Whenever a change is made to an array, the

.17 -

Magic 's Incremental Design-Rule Checker December 7, 1983

areas to be checked

surround overlaps

by one halo

Figure 7. An array is internally consistent if the three dotted areas satisfy the
design rules. All possible interactions between elements of the array are identical to
the ones that occur these three regions.

array structure is reverified by checking the three areas shown in Figure 7.

6. Implementation and Performance

The design-rule checker is written in C. Its 2000 lines of code are divided
into roughly equal thirds for building the internal rule table from the technol-
ogy file, implementing the basic checker on one plane, and providing for

hierarchical checking.

The incremental checking system has just recently become operational
We've made preliminary measurements on single cells with the untuned sys-
tem. The basic checker processes 200 tiles per second on a VAX 11/730 run-

ning Unix. To compare Magic's performance with that of other systems, we

- 18 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

state their speeds in terms of transistors checked per second in Table 2.

A typical change to a circuit involves only a few tiles, so the cost of incre-
mentsl reverification is dominated by the size of the halos. From this, we esti-
mate that roughly 50 tiles have to be checked per command in an nMOS

design. This requires about one-fourth of a second of CPU time.

The average number of edges found per tile is 2.5, but only 1.8 of these
have different mask types on the two sides of the edge. An average of 1.7

rules are applied per non-trivial edge.

7. Conclusions

Magic's design-rule checker demonstrates that incremental checking is
feasible. We think that circuit designers will find that continuous feedback
reduces the time needed to create new designs or modify existing ones. The
key to the incremental checker is low overhead: the ability to run from the
same database as the interactive editor, the ability to find important edges in

the lavout quickly, and the ability to find nearby material quickly. The two

System Transistors / second
Lyra 2] 2

Baker [1] 3

Mart [5] 6-3

Magic 10-15

Table 2. Performance of several design rule checkers. All of the programs were run
on a VAX 11/780.

- 19 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

features of Magic's database that reduce overhead are the corner-stitched tile
planes and the abstract mask layers. Extending the checker to work in
hierarchical designs frees the designer from tedious reverification of interac-

tions when subcells are revised.

8. Acknowledgements

Gordon Hamachi, Bob Mayo, and Walter Scott all participated in discus-
sions that led to the incremental checker and provided many useful comments

on drafts of this paper.

The work described here was supported in part by the Defense Advanced

Research Projects Agency (DoD), under Contract No. N00034-K-0251.

9. References
1] C. M. Baker and C. Terman, “Tools for verifying integrated circuit

designs,” Lambda (now VLSI Design) Vol. 1, No. 3 {1980), pp. 22-30.

2 M. H. Arnold and J. K. Ousterhout, “Lyra: A New Approach to
Geometric Layout Rule Checking,” Proc. 19th Design Automation

Con ference, June, 1982, pp. 530-36.

(3] J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott and G. S.
Taylor, *“Magic: A VLSI Layout System,” included in this technical

report.

- 20 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

4]

J. K. Ousterhout, “Corner Stitching: A Data Structuring Technique
for VLSI Layout Tools,” Technical Report UCB/CSD 82/114, Com-
puter Science Division, University of California, Berkeley, December,
1982. To appear in I[EEE Transactions on CAD/ICAS, January,

1684.

B. J. Nelson and M. A. Shand, “*An Integrated, Technology Indepen-
dent, High Performance Artwork Analyzer for VLSI Circuit Design,”
Technical Report VLSI-TR-83-4-1, VLSI Program, Division of Com-

puting Research, CSIRO, Eastwood, SA 5063, Australia, April, 1883.

Magic s Incremental Design-Rule Checker December 7, 1983

10. Appendix

To illustrate how Magic is programmed for a particular technology, this
section lists the design rules for an nMOS process with buried contacts and a
single level of metal. Most rules are specified using width and sp;cing macros
which Magic expands into detailed lower-level rules. Detailed edge and four-
way rules may also be specified directly. Table 3 gives the abbreviations that

we use for the names of mask types.

Poly /Diffusion plane: space

diffusion

polysilicon
diffusion-metal contact
polysilicon-metal contact
buried contact

enhancement transistor

~ 0o WUDU o @

depletion transistor

Metal plane: space
metal

metal-diffusion contact

~< %3 °

metal-polysilicon contact

Table 3. Single letter abbreviations for the names of mask types.

The rules in Table 4a defne minimum line widths and feature sizes. The
first three rules are for the line widths of diffusion, metal and polysilicon. The
last five rules define the sizes of contacts and transistors. The types field may
include one or more mask types. Magic creates a detailed edge rule for all
combinations of one member of the types field, and one of the mask types in

the same plane that is not included in the ¢ypes feld.

Magic’s Incremental Design-Rule Checker December 7, 1983

types d reason
width dDBef 2 diffuamion
width pPBef 2 polysilicon
width mXY 3 metal
width D 4 di ff/retal contact
width P 4 palyfinetal contact
width B 2 buried contact
width e 2 et
width f 2 dfet

Table 4a. Width rules.

Table 4b contains spacing rules. We distinguish between spacing rules for
types that can never be adjacent and spacing rules that apply only when two
pieces of material are separated. In either case, Magic creates a number of

detailed edge rules in a manner similar to that for width rules.

The width and spacing macros can be used to specify most symmetrical
constraints for a particular technology. The detailed edge rules created from

the width and spacing macros are applied only from left-to-right across

can be
types 1 types 2 d adjacent? reason

spacing ef DP 1 no transistor — contact
spacing e f 3 no efet = dfet
spacing B e 3 no huried contact ~ efet
spacing . dDBef dDBef 3 yes diff-diff
spacing pPBef pPBel 2 yes poly ~ poly
spacing mXY mXY 3 yes metal ~ metal

Table 4b. Spacing rules.

.93 -

Magic ‘s Incremental Design-Rule Checker December 7, 1983

vertical edges in the layout, and from bottom-to-top across horizontal edges.

These edge rules always check one corner, also.

To specify asymmetrical constraints and constraints that apply alongside
edges but not in corners, we use the explicit edge and fourway rules listed in
Table 4c. The fourway rules are applied in both directions across all edges in
the layout. They also trigger corner checks on both ends of every edge. The
edge rules in Table 4c are similar to the ones derived from the width and spac-

ing macros, but could not be written conveniently in either of those forms.

layers corner

type 1 type 2 d allowed types ce reasan
edge d spP 1 s spP 1 &iff - paiy spacing
edge p sdD 1 s sdD 1 4iff - poly spacing
edge D sp 1 s sp 1 & ff - paly spacing
-edge P sd 1 s sd 1 diff — paly spacing
fourway ef 3 1 0 0 0 trans can? toush spoce
fourway B dD 4 sdpDPBf sdpDPBef 3 b.c — ¢fet epacing
fourway [B 3 B 0 0 b.¢ next to dfet must be ¢
fourway ef p 2 pP o 2 poly overhang transistor
fourway ef d 2 dD d 2 $ff overhang anastor

Table 4c. Edge and fourway rules.

- 24 -

