
Introduction to Simulation using IRSIM

1. Introduction

IRSIM is an event-driven logic level simulator for MOS circuits. It can simulate in two modes: switchand linear.Theswitchmode is useful for initializing or determining

the functionality of a MOS network; while the linear mode is useful for determining transition times and gate delays. This page is a brief introduction to the basics of

IRSIM and is not meant to replace the IRSIM manual. Please refer to the IRSIM man page for details.

2. Using IRSIM for Combinational Logic

For the purpose of this simple tutorial we will use the 2-input XOR gate depicted in Fig. 1. This layout was drawn using Magic and saved in2xor.mag

Figure 1: Layout of a 2-input XOR gate

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

IRSIM files are just text files that contain device connectivity and parasitics information pertaining to a circuit. Follow the procedure described below to create these files

and use them to simulate the above 2-input XOR gate in IRSIM.

Create an extracted version of your circuit: Make sure that you have labeled all power and ground nodes as Vdd! andGND! , respectively. You should also label

all other nodes that you are interested in monitoring during simulation. Remember to save your layout file after you make any changes. Before exiting the layout

editor Magic execute the long command :ext all to perform circuit extraction. This will create a file 2xor.extin your present working directory.

Create a .sim file: After quitting Magic type the following command at the Unix prompt. This will convert the 2xor.ext file to 2xor.sim file

ext2sim -t! -t# 2xor.ext

This will create the following files in your current working directory:

2xor.al -- list of all nodes that have different names but are connected together (i.e., aliased nodes).

2xor.nodes -- list of all nodes in the circuit.

2xor.sim -- the .sim file to used for logic simulation.

Please see the man page for ext2sim for details.

Create an IRSIM command script: Create a script file (2xor.icmd) containing the IRSIM commands listed below. You can also enter the commands interactively.

However, having a script file enables us to simulate different versions of the same circuit without retyping the simulation commands.

model linear
w a b xor
vector in a b
ana a b in xor

set in 00
s 10

set in 01
s 10

path xor

set in 10
s 10

set in 11
s 10

path xor

The ̀ w' command tells IRSIM to watch the nodes in following list. The `vector' command groups a list of inputs together so that they all can be set

simultaneously. In the above script, input nodes a andb are grouped together in vector "in ".The ̀ ana' (analyzer) command causes IRSIM to display the listed nodes

and vectors using its builtin graphical logic analyzer. The `set in 01' command is used to the set the vector "in " to 01 (i.e., a=0, b=1). The `s' command tells

IRSIM to simulate for a certain period of time (in the above script it is 10ns). The `path' command shows the critical path for the last transition of a node (see

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

details in the output below).

Run IRSIM: Run the IRSIM simulator using the command given below:

irsim scmos1.2um.prm 2xor.sim -2xor.icmd

In the above command scmos1.2um.prm is the parameter file for the 1.2um CMOS technology. Parameter files for other technologies are available in the

/home/cad/vlsi/models/irsim. IRSIM will respond with the following simulation output.

*** IRSIM version 9.4.2 ***
info: SU format --> using S/D attrs to compute junction parasitics
Warning: Aliasing nodes 'GND' and 'Gnd'
2xor.sim: Ignoring lumped-resistance ('R' construct)

Read 2xor.sim lambda:0.60u format:SU
9 nodes; transistors: n-channel=5 p-channel=5
parallel txtors:none
xor=0 b=0 a=0
time = 10.00ns

xor=1 b=1 a=0
time = 20.00ns

critical path for last transition of xor:
b -> 1 @ 10.00ns , node was an input
a_n29_n23 -> 0 @ 10.17ns (0.17ns)
xor -> 1 @ 10.51ns (0.34ns)

xor=1 b=0 a=1
time = 30.00ns

xor=1 b=1 a=0
time = 40.00ns

xor=0 b=1 a=1
time = 50.00ns

critical path for last transition of xor:
a -> 1 @ 40.00ns , node was an input
xor -> 0 @ 40.32ns (0.32ns)

Because of the ̀ ana' command in the above script, IRSIM also opens up the analyzer window shown in Fig. 2.

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

Figure 2: IRSIM Analyzer Window

Using the IRSIM analyzer: You can use the analyzer window to do time measurement, print outputs, change view, etc.

To find time of an event click in the analyzer's waveform window to get a vertical cursor. The time where this vertical cursor is is displayed above.

You can also determine the period between two events: Select "delta T" from "window" menu. Click on the first event and then click on the second

event. The period between these events is displayed as "diff" at the bottom of the window as shown in Fig 2 above.

For a multi-bit vector, you can change the base used for the display using the "base" menu.

You can change the width of view by using the "zoom" menu.

To print the waveform to a postscript file, go to the "print" menu and select "file". You will be asked for a filename. Hit return to select the default

filename shown. Once you exit from IRSIMyou will have a file 2xor.ps in your current working directory. You can print this file on any postscript

printer. The output file for the above simulation is shown in Fig. 3.

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

Figure 3: IRSIM simulation output file created using the "print" menu command

End IRSIM Simulation: You can end your simulation anytime by typing in the quit command at the IRSIM> prompt.

3. Using IRSIM for Synchronous Sequential Logic

Example 1: The2-bit up/down counter described in the Megtutorials can be simulated in IRSIM using the counter.icmdscript given below:

model linear

clock clka 0 1 0 0
clock clkabar 1 0 1 1
clock clkb 0 0 0 1
clock clkbbar 1 1 1 0

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

vector state StBit{0:1}*
vector control up down
vector count b1 b0

ana clka clkb StBit1* StBit0* state restart up down control b1 b0
count

@ reset.icmd

| 16 clock cycles
V restart 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
V control 10 10 00 00 10 10 10 10 10 00 00 01 01 01 01 01
R

| 2 clock cycles
V restart 0 0
set control 10
R

The above simulation script includes several new features. The `clock' commands are used to describe a 2-phase non-overlapping clock. The nodes in the definition of vector

"state " are described using a compact notation StBit{1:0}* instead of StBit1* StBit0* . The above script invokes another script reset.icmd. This nesting of other script

files enables you to build specialized test sequences and include them as and when needed in the main script file. The script also demonstrates the use of the ` V ' command (as

an alternative to the 'set' command) to provide the control input. The ` V ' command defined to restart the counter is intentionally asserted on the second clock cycle so that

the power-up of the counter in an undefined state can be observed. The reset.icmd file is described below.

V restart 0 1 0
V control 00 00 00
R

The results of the IRSIM simulation of the 2-bit up/down counter using the above script are depicted in Fig. 4.

Figure 4: IRSIM simulation of the 2-bit up/down counter

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

Example 2: TheBit Serial Adder described in the Pegtutorials can be simulated in IRSIM using the sadder.icmdscript given below:

model linear

clock clka 0 1 0 0
clock clkabar 1 0 1 1
clock clkb 0 0 0 1
clock clkbbar 1 1 1 0

vector operands a b
vector state St1 St0
ana phi1 phi2 reset state a b operands sum

@ reset.icmd

V reset 0 0 0 1 0 0 0 0 0 0 0 0
V operands 10 01 11 00 01 10 11 10 01 11 00 01
R

The reset.icmd file is described below.

V reset 0 1 0
V control 00 00 00
R

The results of the IRSIM simulation of the Bit Serial Adder using the above script are depicted in Fig. 5.

Figure 5: IRSIM simulation of the Bit Serial Adder

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

Return to EE6325 homepage

http://www.utdallas.edu/~poras/courses/ee6325/lab/irsim/ 07:06:40 17/01/03

