
Magic Maintainer’s Manual #2: The Technology File

Walter Scott

Special Studies Program

Lawrence Livermore National Laboratory

P.O. Box 808, L-270

Livermore, CA 94550

John Ousterhout

Computer Science Division

Electrical Engineering and Computer Sciences

University of California

Berkeley, CA 94720

(Updated by others, too.)

This manual corresponds to Magic version 7.4 and technology format 30

Tutorials to read first:

Magic Tutorial #1: Getting Started

Magic Tutorial #2: Basic Painting and Selection

Magic Tutorial #6: Design-Rule Checking

Magic Tutorial #8: Circuit Extraction

Magic Tutorial #9: Format Conversion for CIF and Calma

You should also read at least the first, and probably all four, of the papers on Magic that appeared

in the ACM IEEE 21st Design Automation Conference, and the paper “Magic’s Circuit Extractor”,

which appeared in the ACM IEEE 22nd Design Automation Conference. The overview paper from

the DAC was also reprinted in IEEE Design and Test magazine in the February 1985 issue. The

circuit extractor paper also appeared in the February 1986 issue of IEEE Design and Test magazine.

Commands introduced in this manual:

path tech *watch

Macros introduced in this manual:

(None)

Changes since Magic version 7.2:

–1–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

• Support for stacked contacts.

• “variants” option for the cifinput, cifoutput, and extract sections, allowing an efficient de-

scription of different styles having minor variations.

• Supports names for layer drawing styles in addition to the usual numbers.

• Section name images duplicates the contacts section, allowing a less-restrictive definition

of images that exist, like contacts, on multiple planes.

• Support for multi-line technology descriptions.

• “include” statement to divide technology files into parts.

• “alias” statements to replace the original cpp-style macros

• Support for angstroms in the scalefactor line of cifinput and cifoutput.

• Additional DRC types “surround”, “overhang”, and “rect only”.

• Additional cifoutput operators “slots” and “bloat-all”.

• Additional cifoutput statement “render” for 3-D information

• Asterisk syntax for layers that expands to the layer and all of the contacts containing that

layer as a residue.

• The technology file syntax for the PNM format was changed in magic 7.3.56, and the plot

pnm command will use a default style derived from the layout styles if no section is present

in the technology file.

Changes since Magic version 6.5:

• Moved technology format from the filename to the “tech” section

• Added subdirectory searching to the path search for technology files.

• Support for technology file re-loading after Magic starts up, and support for re-loading of

individual sections of the technology file.

• Scalefactors can now be any number whatsoever, for both CIF and GDS. For example, a

scalefactor of 6.5 corresponds to a 0.13 micron process.

• A parameter nanometers has been added to the scalefactor specification for both cifinput and

cifoutput sections. This parameter declares that all numbers in the style description are in

nanometers instead of centimicrons.

• The calmaonly parameter to the scalefactor specification is deprecated (ignored if found).

• The scale reducer parameter is deprecated (generated automatically, and ignored if found in

the techfile).

–2–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

• The magic grid spacing is no longer assumed to be equal to the process lambda. It may be

rescaled with the “scalegrid” command, and CIF and Calma reads may alter the value of

magic units per lambda.

• Support for PNM and PostScript graphics in the “plot” section.

• Full support for bipolar junction transistors, capacitors, and resistors with the “extract” sec-

tion keyword “device”

• Support for three-dimensional modeling and geometry extraction

• Support for the DRC widespacing rule

• Handling of contacts in the extraction section is capable of matching the CIF output section

by specifying border, size, and spacing.

1 Introduction

Magic is a technology-independent layout editor. All technology-specific information comes from

a technology file. This file includes such information as layer types used, electrical connectivity

between types, design rules, rules for mask generation, and rules for extracting netlists for circuit

simulation.

This manual describes the use, contents, and syntax of Magic’s technology file format, and

gives hints for building a new one or (more typically) rewriting an existing one for a new fabrication

process. References to specific files in the Magic distribution assume that your current working

directory is the Magic source top-level directory.

2 Downloads and Installation

Typically, there is a different technology file for each fabrication process supported by Magic.

Scalable technologies, which are (within limits) independent of feature size, will typically have

one technology file for all processes supporting the same set of lambda-based (scalable) DRC

rules. That said, modern technologies (post-1980’s, more or less) tend to be more restrictive in

their design rules, and consequently not scalable. This is particularly true of processes which push

the envelope on feature sizes.

The Magic source distribution is packaged with a “standard” set of scalable SCMOS rules,

which is the technology loaded by default. Default settings are for 1 µm technology, which is

out of date. However, the variety and availability of processes means that the “definitive” set of

technology files is prohibitively large to be included with the Magic source. In addition, process

refinements generally require technology file updates on a regular basis. Because of this, the basic

collection of technology files is handled by the MOSIS foundation, not by the Magic development

team. This collection represents all processes which are available for fabriction through the MOSIS

foundation. Most other vendors have proprietary process specifications, requiring tool maintainers

to write their own technology files or modify an existing one to match the proprietary process.

–3–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

The standard technology file set can be downloaded from an FTP server at the MOSIS founda-

tion. These files are regularly updated, but there is usually a symbolic link called “current” to the

most recent stable revision. The download URL is the following:

ftp://ftp.mosis.edu/pub/sondeen/magic/new/beta/current.tar.gz

Assuming that the install destination for magic is /usr/local, this file should be put either in

/usr/local/lib/magic/sys or (preferably) in /usr/local/lib/magic/sys/current. Other destinations

may be used, if the system search path is appropriately specified on startup (see Section 3, below).

The technology file collection is in tarred, gzipped format, and should be installed with the

following commands:

cd /usr/local/lib/magic/sys/current
gunzip current.tar.gz
tar xf current.tar

Once unpacked, these files are ready to be used in Magic.

3 Command-Line Invocation

You can run Magic with a different technology by specifying the -Ttechfile flag on the command

line you use to start Magic, where techfile is the name of a file of the form techname.tech, searched

for in one of the following directories (listed by search order):

1. The current directory

2. The library directory /usr/local/lib/magic/sys

3. The library directory /usr/local/lib/magic/current

This search order is not fixed and can be altered by the command path sys, which may be redefined

in the system or user .magic startup script file. In addition, the startup script may load a new

techfile, regardless of what was specified on the command line, or may load a new techfile provided

that one has not been specified on the command line (the -nooverride option. The -noprompt

switch causes the technology to be loaded without first prompting the user for confirmation.

tech load filename -noprompt [-nooverride]

4 Technology File Format Overview

A technology file is organized into sections, each of which begins with a line containing a single

keyword and ends with a line containing the single word end. If you examine one of the Magic

technology files in the installation directory ${CAD HOME}/lib/magic/sys/, e.g., scmos.tech,

you can see that it contains the following sections:

–4–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

tech

planes

types

styles

contact

compose

connect

cifoutput

cifinput

mzrouter

drc

extract

wiring

router

plowing

plot

These sections must appear in this order in all technology files. Every technology file must

have all of the sections, although the sections need not have any lines between the section header

and the end line.

Historically, technology files were written in a C-language context which was processed by

the C preprocessor. This allows the use of C-language comments (“/* . . . */”) and the use of

preprocessing definitions (“#define . . . ”) and conditionals (“#ifdef . . . #endif”). The technology

files were generated from a Makefile with the preprocessor constructs used to generate different

sections of the technology file at different lambda scales. The decreasing use of scalable processes,

however, has made this method largely obsolete, and the standard collection of technology files

from MOSIS does not use them at all. Technology files are now written in their final form, not in

preprocessed form. Information regarding preprocessor constructs is not included below, but can

of course be obtained from the manual pages for the preprocessor itself (gcc or cpp). But also note

that the use of C preprocessors for processing text files other than source code is now generally

discouraged in favor of using a macro definition processor like m4 (see the manual page for m4 for

details). On the other hand, macro definition processors are almost universally despised, so many

preprocessor functions have been written into the technology file syntax.

The default scmos set of technology files included with the Magic distribution is still processed

via the C preprocessor. Preprocessed files have the extension “.tech.in”. Technology files written

specifically for Magic version 7.3 tend to make use of additional features of the technology file

syntax that subsume most of the functions of the C preprocessor and M4 processor normally used

to generate technology files.

Each section in a technology file consists of a series of lines. Each line consists of a series of

words, separated by spaces or tabs. If a line ends with the character “\�”, the “\�” is ignored and the

following newline is treated as an ordinary blank. For example,

width allDiff 2 \�

"Diffusion width must be at least 2"

is treated as though it had all appeared on a single line with no intervening “\�”. On the other

hand, for the purposes of tracking errors in technology file input, the technology file parser treats

–5–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

these as separate lines, so that when magic reports an error on a specific line of the technology file,

it will agree with the line numbering of the editor used to edit the file.

Comments may be embedded in the technology file. Magic’s technology file parser will ignore

all text beginning with the character # through the end of the line.

The rest of this part of the manual will describe each of the technology file sections in turn.

5 Tech section

Magic stores the technology of a cell in the cell’s file on disk. When reading a cell back in to Magic

from disk, the cell’s technology must match the name of the current technology, which appears as

a single word in the tech section of the technology file. See Table 1 for an example.

tech

format 30

scmos

end

Table 1: Tech section

The name of the technology declared in the tech section is meaningful to Magic, whereas the

name of the file itself is not. Typically the name of the file will be the same as the name of the

technology, to avoid confusion, but this need not be the case.

Versions of magic prior to 7.2 embedded the format version of the technology in the file name,

e.g., scmos.tech27. The last format version to use this syntax, 27, is still accepted as a valid

filename extension. Many technology files still use this notation, including (at the time of writing)

the collection from MOSIS. Now the format is declared inside the tech section.

6 A short tutorial on “corner stitching”

The planes, types, and contact sections are used to define the layers used in the technology.

Magic uses a data structure called corner-stitching to represent layouts. Corner-stitching represents

mask information as a collection of non-overlapping rectangular tiles. Each tile has a type that

corresponds to a single Magic layer. An individual corner-stitched data structure is referred to as a

plane.

Magic allows you to see the corner-stitched planes it uses to store a layout. We’ll use this

facility to see how several corner-stitched planes are used to store the layers of a layout. Enter

Magic to edit the cell maint2a. Type the command *watch active demo. You are now looking

at the active plane. Each of the boxes outlined in black is a tile. (The arrows are stitches, but are

unimportant to this discussion.) You can see that some tiles contain layers (polysilicon, ndiffusion,

ndcontact, polycontact, and ntransistor), while others contain empty space. Corner-stitching is

unusual in that it represents empty space explicitly. Each tile contains exactly one type of material,

or space.

You have probably noticed that metal1 does not seem to have a tile associated with it, but

instead appears right in the middle of a space tile. This is because metal1 is stored on a different

–6–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

plane, the metal1 plane. Type the command :*watch metal1 demo. Now you can see that there are

metal1 tiles, but the polysilicon, diffusion, and transistor tiles have disappeared. The two contacts,

polycontact and ndcontact, still appear to be tiles.

The reason Magic uses several planes to store mask information is that corner-stitching can

only represent non-overlapping rectangles. If a layout were to consist of only a single layer, such

as polysilicon, then only two types of tiles would be necessary: polysilicon and space. As more

layers are added, overlaps can be represented by creating a special tile type for each kind of overlap

area. For example, when polysilicon overlaps ndiffusion, the overlap area is marked with the tile

type ntransistor.

Although some overlaps correspond to actual electrical constructs (e.g., transistors), other over-

laps have little electrical significance. For example, metal1 can overlap polysilicon without chang-

ing the connectivity of the circuit or creating any new devices. The only consequence of the overlap

is possibly a change in parasitic capacitance. To create new tile types for all possible overlapping

combinations of metal1 with polysilicon, diffusion, transistors, etc. would be wasteful, since these

new overlapping combinations would have no electrical significance.

Instead, Magic partitions the layers into separate planes. Layers whose overlaps have electrical

significance must be stored in a single plane. For example, polysilicon, diffusion, and their overlaps

(transistors) are all stored in the active plane. Metal1 does not interact with any of these tile types,

so it is stored in its own plane, the metal1 plane. Similarly, in the scmos technology, metal2 doesn’t

interact with either metal1 or the active layers, so is stored in yet another plane, metal2.

Contacts between layers in one plane and layers in another are a special case and are repre-

sented on both planes. This explains why the pcontact and ndcontact tiles appeared on both the

active plane and on the metal1 plane. Later in this section, when the contacts section of the

technology file is introduced, we’ll see how to define contacts and the layers they connect.

7 Planes, types, and contact sections

The planes section of the technology file specifies how many planes will be used to store tiles in a

given technology, and gives each plane a name. Each line in this section defines a plane by giving

a comma-separated list of the names by which it is known. Any name may be used in referring

to the plane in later sections, or in commands like the *watch command indicated in the tutorial

above. Table 2 gives the planes section from the scmos technology file.

planes

well,w

active,diffusion,polysilicon,a

metal1,m1

metal2,m2

oxide,ox

end

Table 2: Planes section

Magic uses a number other planes internally. The subcell plane is used for storing cell instances

rather than storing mask layers. The designRuleCheck and designRuleError planes are used by

–7–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

the design rule checker to store areas to be re-verified, and areas containing design rule violations,

respectively. Finally, the mhint, fhint, and rhint planes are used for by the interactive router (the

iroute command) for designer-specified graphic hints.

There is a limit on the maximum number of planes in a technology, including the internal

planes. This limit is currently 64. To increase the limit, it is necessary to change MAXPLANES

in the file database/database.h.in and then recompile all of Magic as described in “Maintainer’s

Manual #1”. Each additional plane involves additional storage space in every cell and some addi-

tional processing time for searches, so we recommend that you keep the number of planes as small

as you can do cleanly.

The types section identifies the technology-specific tile types used by Magic. Table 3 gives

this section for the scmos technology file. Each line in this section is of the following form:

plane names

Each type defined in this section is allowed to appear on exactly one of the planes defined in the

planes section, namely that given by the plane field above. For contacts types such as pcontact,

the plane listed is considered to be the contact’s home plane; in Magic 7.3 this is a largely irrelevant

distinction. However, it is preferable to maintain a standard of listing the lowest plane connected

to a contact as it’s “home plane” (as they appear in the table).

types

active polysilicon,red,poly,p

active ndiffusion,green,ndiff

active pdiffusion,brown,pdiff

metal1 metal1,m1,blue

metal2 metal2,m2,purple

well pwell,pw

well nwell,nw

active polycontact,pcontact,pc

active ndcontact,ndc

active pdcontact,pdc

metal1 m2contact,m2c,via,v

active ntransistor,nfet

active ptransistor,pfet

active psubstratepcontact,ppcontact,ppcont,psc,ppc,pwc,pwcontact

active nsubstratencontact,nncontact,nncont,nsc,nnc,nwc,nwcontact

active psubstratepdiff,psd,ppdiff,ppd,pohmic

active nsubstratendiff,nsd,nndiff,nnd,nohmic

metal2 pad

oxide glass

end

Table 3: Types section

The names field is a comma-separated list of names. The first name in the list is the “long”

name for the type; it appears in the .mag file and whenever error messages involving that type are

–8–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

printed. Any unique abbreviation of any of a type’s names is sufficient to refer to that type, both

from within the technology file and in any commands such as paint or erase.

Magic has certain built-in types as shown in Table 4. Empty space (space) is special in that

it can appear on any plane. The types error p, error s, and error ps record design rule viola-

tions. The types checkpaint and checksubcell record areas still to be design-rule checked. Types

magnet, fence, and rotate are the types used by designers to indicate hints for the irouter.

Tile type Plane

space all

error p, EP designRuleError

error s, ES designRuleError

error ps, EPS designRuleError

checkpaint, CP designRuleCheck

checksubcell, CS designRuleCheck

magnet, mag mhint

fence, f fhint

rotate, r rhint

Table 4: Built-in Magic types

There is a limit on the maximum number of types in a technology, including all the built-in

types. Currently, the limit is 256 tile types. To increase the limit, you’ll have to change the value of

TT MAXTYPES in the file database/database.h.in and then recompile all of Magic as described

in “Maintainer’s Manual #1”. Because there are a number of tables whose size is determined by

the square of TT MAXTYPES, it is very expensive to increase TT MAXTYPES. Magic version

7.2 greatly reduced the number of these tables, so the problem is not as bad as it once was. Most

internal tables depend on a bitmask of types, the consequence of which is that the internal memory

usage greatly increases whenever TT MAXTYPES exceeds a factor of 32 (the size of an integer,

on 32-bit systems). Magic version 7.3 further alleviates the problem by reducing the number of

“derived” tile types that magic generates internally, so that the total number of types is not much

larger than the number declared in the types section. Magic-7.4 only generates extra types for pairs

of stackable contact types. For a typical process, the number of these derived stacked contact pairs

is around 15 to 20.

The declaration of tile types may be followed by a block of alias declarations. This is similar to

the “macro” definitions used by preprocessors, except that the definitions are not only significant

to the technology file parser, but extend to the user as well. Thus the statement “alias metalstack

m1,m2,m3” may be a convenient shorthand where metal layers 1, 2, and 3 appear simultaneously,

but the end-user can type the command “paint metalstack” and get the expected result of all

three metal layers painted. The alias statement has the additional function of allowing backward-

compatibility for technology files making use of stackable contacts (see below) with older layouts,

and cross-compatibility between similar technologies that may have slight differences in layer

names.

The contact section lets Magic know which types are contacts, and the planes and component

types to which they are connected.

–9–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

Each line in the contact section begins with a tile type, base, which is thereby defined to be

a contact. This type is also referred to as a contact’s base type. The remainder of each line is

a list of non-contact tile types that are connected by the contact. These tile types are referred to

as the residues of the contact, and are the layers that would be present if there were no electrical

connection (i.e., no via hole). In Table 5, for example, the type pcontact is the base type of a

contact connecting the residue layers polysilicon on the active plane with metal1 on the metal1

plane.

contact

pcontact poly metal1

ndcontact ndiff metal1

pdcontact pdiff metal1

ppcontact ppdiff metal1

nncontact nndiff metal1

m2contact metal2 metal1

pad metal1 metal2 glass

end

Table 5: Contact section

In Magic-7.3 and above, any number of types can be connected, and those types may exist

on any planes. It is the duty of the technology file developer to ensure that these connections

make sense, especially if the planes are not contiguous. However, because Magic-7.3 handles

stacked contacts explicitly, it is generally better to define contacts only between two adjacent

planes, and use the stackable keyword (see below) to allow types to be stacked upon one an-

other. The multiple-plane representation exists for backward compatibility with technology files

written for versions of Magic prior to 7.3. Stackable contacts in older technology files take the

form:

contact pc polysilicon metal1

contact m2c metal1 metal2

contact pm12c polysilicon metal1 metal2

In Magic version 7.3, the above line would be represented as:

contact pc polysilicon metal1

contact m2c metal1 metal2

stackable pc m2c pm12c

where the third line declares that contact types m2c and pc may be stacked together, and that

type name “pm12c” is a valid alias for the combination of “pc” and “m2c”.

Each contact has an image on all the planes it connects. Figure 1 depicts the situation graphi-

cally. In later sections of the technology file, it is sometimes useful to refer separately to the various

images of contact. A special notation using a slash character (“/”) is used for this. If a tile type

aaa/bbb is specified in the technology file, this refers to the image of contact aaa on plane bbb.

For example, pcontact/metal1 refers to the image of the pcontact that lies on the metal1 plane,

and pcontact/active refers to the image on the active plane, which is the same as pcontact.

–10–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

metal1 plane

active plane

drawn: pcontact

automatically generated: pcontact/m1

Figure 1: A different tile type is used to represent a contact on each plane that it connects. Here,

a contact between poly on the active plane and metal1 on the metal1 plane is stored as two tile

types. One, pcontact, is specified in the technology file as residing on the active plane; the other

is automatically-generated for the metal1 plane.

8 Specifying Type-lists

In several places in the technology file you’ll need to specify groups of tile types. For example,

in the connect section you’ll specify groups of tiles that are mutually connected. These are called

type-lists and there are several ways to specify them. The simplest form for a type-list is a comma-

separated list of tile types, for example

poly,ndiff,pcontact,ndc

The null list (no tiles at all) is indicated by zero, i.e.,

0

There must not be any spaces in the type-list. Type-lists may also use tildes (“˜”) to select all

tiles but a specified set, and parentheses for grouping. For example,

˜(pcontact,ndc)

selects all tile types but pcontact and ndc. When a contact name appears in a type-list, it selects

all images of the contact unless a “/” is used to indicate a particular one. The example above will

not select any of the images of pcontact or ndc. Slashes can also be used in conjunction with

parentheses and tildes. For example,

˜(pcontact,ndc)/active,metal1

selects all of the tile types on the active plane except for pcontact and ndc, and also selects

metal1. Tildes have higher operator precedence than slashes, and commas have lowest precedence

of all.

A special notation using the asterisk (“*”) is a convenient way to abbreviate the common situ-

ation where a rule requires the inclusion of a tile type and also all contacts that define that tile type

as one of their residue layers, a common occurrence. The notation

–11–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

*metal1

expands to metal1 plus all of the contact types associated with metal1, such as ndc, pdc, nsc,

m2c, and so forth.

Note: in the CIF sections of the technology file, only simple comma-separated names are

permitted; tildes and parentheses are not understood. However, everywhere else in the technology

file the full generality can be used. The “*” notation for inclusion of contact residues may be

present in any section.

9 Styles section

Magic can be run on several different types of graphical displays. Although it would have been

possible to incorporate display-specific information into the technology file, a different technology

file would have been required for each display type. Instead, the technology file gives one or more

display-independent styles for each type that is to be displayed, and uses a per-display-type styles

file to map to colors and stipplings specific to the display being used. The styles file is described

in Magic Maintainer’s Manual #3: “Styles and Colors”, so we will not describe it further here.

Table 6 shows part of the styles section from the scmos technology file. The first line specifies

the type of style file for use with this technology, which in this example is mos. Each subsequent

line consists of a tile type and a style number (an integer between 1 and 63). The style number is

nothing more than a reference between the technology file and the styles file. Notice that a given

tile type can have several styles (e.g., pcontact uses styles #1, #20, and #32), and that a given style

may be used to display several different tiles (e.g., style #2 is used in ndiff and ndcontact). If a tile

type should not be displayed, it has no entry in the styles section.

It is no longer necessary to have one style per line, a restriction of format 27 and earlier.

Multiple styles for a tile type can be placed on the same line, separated by spaces. Styles may be

specified by number, or by the “long name” in the style file.

10 Compose section

The semantics of Magic’s paint operation are defined by a collection of rules of the form, “given

material HAVE on plane PLANE, if we paint PAINT, then we get Z”, plus a similar set of rules

for the erase operation. The default paint and erase rules are simple. Assume that we are given

material HAVE on plane PLANE, and are painting or erasing material PAINT.

1. You get what you paint.

If the home plane of PAINT is PLANE, or PAINT is space, you get PAINT; otherwise, nothing

changes and you get HAVE.

2. You can erase all or nothing.

Erasing space or PAINT from PAINT will give space; erasing anything else has no effect.

These rules apply for contacts as well. Painting the base type of a contact paints the base type

on its home plane, and each image type on its home plane. Erasing the base type of a contact erases

both the base type and the image types.

–12–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

styles

styles

styletype mos

poly 1

ndiff 2

pdiff 4

nfet 6

nfet 7

pfet 8

pfet 9

metal1 20

metal2 21

pcontact 1

pcontact 20

pcontact 32

ndcontact 2

ndcontact 20

ndcontact 32

pdcontact 4

pdcontact 20

pdcontact 32

m2contact 20

m2contact 21

m2contact 33

end

Table 6: Part of the styles section

It is sometimes desirable for certain tile types to behave as though they were “composed” of

other, more fundamental ones. For example, painting poly over ndiffusion in scmos produces

ntransistor, instead of ndiffusion. Also, painting either poly or ndiffusion over ntransistor leaves

ntransistor, erasing poly from ntransistor leaves ndiffusion, and erasing ndiffusion leaves poly.

The semantics for ntransistor are a result of the following rule in the compose section of the scmos

technology file:

compose ntransistor poly ndiff

Sometimes, not all of the “component” layers of a type are layers known to magic. As an exam-

ple, in the nmos technology, there are two types of transistors: enhancement-fet and depletion-

fet. Although both contain polysilicon and diffusion, depletion-fet can be thought of as also con-

taining implant, which is not a tile type. So while we can’t construct depletion-fet by painting poly

and then diffusion, we’d still like it to behave as though it contained both materials. Painting poly

or diffusion over a depletion-fet should not change it, and erasing either poly or diffusion should

give the other. These semantics are the result of the following rule:

–13–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

decompose dfet poly diff

The general syntax of both types of composition rules, compose and decompose, is:

compose type a1 b1 a2 b2 . . .

decompose type a1 b1 a2 b2 . . .

The idea is that each of the pairs a1 b1, a2 b2, etc comprise type. In the case of a compose

rule, painting any a atop its corresponding b will give type, as well as vice-versa. In both compose

and decompose rules, erasing a from type gives b, erasing b from type gives a, and painting either

a or b over type leaves type unchanged.

compose

compose nfet poly ndiff

compose pfet poly pdiff

paint pwell nwell nwell

paint nwell pwell pwell

paint pdc/active pwell ndc/active

paint pdc/m1 pwell ndc/m1

paint pfet pwell nfet

paint pdiff pwell ndiff

paint nsd pwell psd

paint nsc/active pwell psc/active

paint nsc/m1 pwell psc/m1

paint ndc/active nwell pdc/active

paint ndc/m1 nwell pdc/m1

paint nfet nwell pfet

paint ndiff nwell pdiff

paint psd nwell nsd

paint psc/active nwell nsc/active

paint psc/m1 nwell nsc/m1

end

Table 7: Compose section

Contacts are implicitly composed of their component types, so the result obtained when paint-

ing a type PAINT over a contact type CONTACT will by default depend only on the component

types of CONTACT. If painting PAINT doesn’t affect the component types of the contact, then it is

considered not to affect the contact itself either. If painting PAINT does affect any of the compo-

nent types, then the result is as though the contact had been replaced by its component types in the

layout before type PAINT was painted. Similar rules hold for erasing.

A pcontact has component types poly and metal1. Since painting poly doesn’t affect either poly

or metal1, it doesn’t affect a pcontact either. Painting ndiffusion does affect poly: it turns it into an

ntransistor. Hence, painting ndiffusion over a pcontact breaks up the contact, leaving ntransistor

on the active plane and metal1 on the metal1 plane.

–14–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

The compose and decompose rules are normally sufficient to specify the desired semantics of

painting or erasing. In unusual cases, however, it may be necessary to provide Magic with explicit

paint or erase rules. For example, to specify that painting pwell over pdiffusion switches its type

to ndiffusion, the technology file contains the rule:

paint pdiffusion pwell ndiffusion

This rule could not have been written as a decompose rule; erasing ndiffusion from pwell does

not yield pdiffusion, nor does erasing pdiffusion from ndiffusion yield pwell. The general syntax

for these explicit rules is:

paint have t result [p]

erase have t result [p]

Here, have is the type already present, on plane p if it is specified; otherwise, on the home plane

of have. Type t is being painted or erased, and the result is type result. Table 7 gives the compose

section for scmos.

It’s easiest to think of the paint and erase rules as being built up in four passes. The first pass

generates the default rules for all non-contact types, and the second pass replaces these as specified

by the compose, decompose, etc. rules, also for non-contact types. At this point, the behavior of

the component types of contacts has been completely determined, so the third pass can generate

the default rules for all contact types, and the fourth pass can modify these as per any compose,

etc. rules for contacts.

11 Connect section

For circuit extraction, routing, and some of the net-list operations, Magic needs to know what

types are electrically connected. Magic’s model of electrical connectivity used is based on signal

propagation. Two types should be marked as connected if a signal will always pass between the

two types, in either direction. For the most part, this will mean that all non-space types within

a plane should be marked as connected. The exceptions to this rule are devices (transistors). A

transistor should be considered electrically connected to adjacent polysilicon, but not to adjacent

diffusion. This models the fact that polysilicon connects to the gate of the transistor, but that the

transistor acts as a switch between the diffusion areas on either side of the channel of the transistor.

The lines in the connect section of a technology file, as shown in Table 8, each contain a pair

of type-lists in the format described in Section 8. Each type in the first list connects to each type in

the second list. This does not imply that the types in the first list are themselves connected to each

other, or that the types in the second list are connected to each other.

Because connectivity is a symmetric relationship, only one of the two possible orders of two

tile types need be specified. Tiles of the same type are always considered to be connected. Contacts

are treated specially; they should be specified as connecting to material in all planes spanned by

the contact. For example, pcontact is shown as connecting to several types in the active plane, as

well as several types in the metal1 plane. The connectivity of a contact should usually be that of its

component types, so pcontact should connect to everything connected to poly, and to everything

connected to metal1.

–15–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

connect

#define allMetal2 m2,m2c/m2,pad/m2

#define allMetal1 m1,m2c/m1,pc/m1,ndc/m1,pdc/m1,ppcont/m1,nncont/m1,pad/m1

#define allPoly poly,pc/a,nfet,pfet

allMetal2 allMetal2

allMetal1 allMetal1

allPoly allPoly

ndiff ndc

pdiff pdc

nwell,nnc,nsd nwell,nnc,nsd

pwell,ppc,psd pwell,ppc,psd

nnc pdc

ppc ndc

end

Table 8: Connect section

12 Cifoutput section

The layers stored by Magic do not always correspond to physical mask layers. For example, there

is no physical layer corresponding to (the scmos technology file layer) ntransistor; instead, the

actual circuit must be built up by overlapping poly and diffusion over pwell. When writing CIF

(Caltech Intermediate Form) or Calma GDS-II files, Magic generates the actual geometries that

will appear on the masks used to fabricate the circuit. The cifoutput section of the technology file

describes how to generate mask layers from Magic’s abstract layers.

12.1 CIF and GDS styles

From the 1990’s, the CIF format has largely been replaced by the GDS format. However, they

describe the same layout geometry, and the formats are similar enough that magic makes use of

the CIF generation code as the basis for the GDS write routines. The technology file also uses

CIF layer declarations as the basis for GDS output. So even a technology file that only expects to

generate GDS output needs a “cifoutput” section declaring CIF layer names. If only GDS output

is required, these names may be longer and therefore more descriptive than allowed by CIF format

syntax.

The technology file can contain several different specifications of how to generate CIF. Each

of these is called a CIF style. Different styles may be used for fabrication at different feature sizes,

or for totally different purposes. For example, some of the Magic technology files contain a style

“plot” that generates CIF pseudo-layers that have exactly the same shapes as the Magic layers. This

style is used for generating plots that look just like what appears on the color display; it makes no

sense for fabrication. Lines of the form

style name

–16–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

cifoutput

style lambda=1.0(gen)

scalefactor 100

layer CWN nwell

bloat-or pdiff,pdc,pfet * 600

bloat-or nsc,nnd * 300

grow 300

shrink 300

gds 42 1

layer CWP pwell

bloat-or ndiff,ndc,nfet * 600

bloat-or psc,ppd * 300

grow 300

shrink 300

gds 41 1

layer CMS allMetal2

labels m2

gds 51 1

layer CAA allDiff

labels ndiff,pdiff

gds 43 1

layer CCA ndc,pdc

squares 200

gds 48 1

layer CCA nncont,ppcont

squares 200

gds 48 1

layer CCP pc

squares 200

gds 47 1

end

Table 9: Part of the cifoutput section for style lambda=1.0(gen) only.

are used to end the description of the previous style and start the description of a new style.

The Magic command :cif ostyle name is typed by users to change the current style used for output.

The first style in the technology file is used by default for CIF output if the designer doesn’t issue

a :cif style command. If the first line of the cifoutput section isn’t a style line, then Magic uses an

initial style name of default.

12.2 Scaling

Each style must contain a line of the form

scalefactor scale [nanometers|angstroms]

–17–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

that tells how to scale Magic coordinates into CIF coordinates. The argument scale indicates

how many hundredths of a micron correspond to one Magic unit. scale may be any number,

including decimals. However, all units in the style description must be integer. Because deep

submicron processes may require CIF operations in units of less than one centimicron, the optional

parameter nanometers declares that all units (including the scale parameter) are measured in units

of nanometers. Likewise, the units may all be specified in angstroms. However unlikely the

dimensions may seem, the problem is that magic needs to place some objects, like contacts, on

half-lambda positions to ensure correct overlap of contact cuts between subcells. A feature size

such as, for example, 45 nanometers, has a half-lambda value of 22.5 nanometers. Since this is not

an integer, magic will complain about this scalefactor. This is true even if the process doesn’t allow

sub-nanometer coordinates, and magic uses the squares-grid statement to enforce this restriction.

In such a case, it is necessary to declare a scalefactor of 450 angstroms rather than 45 nanometers.

Versions of magic prior to 7.1 allowed an optional second (integer) parameter, reducer, or the

keyword calmaonly. The use of reducer is integral to CIF output, which uses the value to ensure

that output values are reduced to the smallest common denominator. For example, if all CIF values

are divisible by 100, then the reducer is set to 100 and all output values are divided by the same

factor, thus reducing the size of the CIF output file. Now the reducer is calculated automatically,

avoiding any problems resulting from an incorrectly specified reducer value, and any value found

after scale is ignored. The calmaonly keyword specified that the scale was an odd integer. This

limitation has been removed, so any such keyword is ignored, and correct output may be generated

for either CIF or Calma at all output scales.

In addition to specifying a scale factor, each style can specify the size in which chunks will

be processed when generating CIF hierarchically. This is particularly important when the average

design size is much larger than the maximum bloat or shrink (e.g, more than 3 orders of magnitude

difference). The step size is specified by a line of the following form:

stepsize stepsize

where stepsize is in Magic units. For example, if you plan to generate CIF for designs that will

typically be 100,000 Magic units on a side, it might make sense for stepsize to be 10000 or more.

12.3 Layer descriptions

The main body of information for each CIF style is a set of layer descriptions. Each layer descrip-

tion consists of one or more operations describing how to generate the CIF for a single layer. The

first line of each description is one of

layer name [layers]

or

templayer name [layers]

These statements are identical, except that templayers are not output in the CIF file. They are

used only to build up intermediate results used in generating the “real” layers. In each case, name

is the CIF name to be used for the layer. If layers is specified, it consists of a comma-separated

–18–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

list of Magic layers and previously-defined CIF layers in this style; these layers form the initial

contents of the new CIF layer (note: the layer lists in this section are less general than what was

described in Section 8; tildes and parentheses are not allowed). If layers is not specified, then the

new CIF layer is initially empty. The following statements are used to modify the contents of a

CIF layer before it is output.

After the layer or templayer statement come several statements specifying geometrical oper-

ations to apply in building the CIF layer. Each statement takes the current contents of the layer,

applies some operation to it, and produces the new contents of the layer. The last geometrical oper-

ation for the layer determines what is actually output in the CIF file. The most common geometrical

operations are:

or layers

and layers

and-not layers

grow amount

shrink amount

bloat-or layers layers2 amount layers2 amount . . .

squares size

squares border size separation

Some more obscure operations are:

grow-grid amount

bloat-max layers layers2 amount layers2 amount . . .

bloat-min layers layers2 amount layers2 amount . . .

bloat-all layers layers2

squares-grid border size separation x y

slots border size separation

slots border size separation border long

slots border size separation border long size long sep long [offset]]

bbox [top]

The operation or takes all the layers (which may be either Magic layers or previously-defined

CIF layers), and or’s them with the material already in the CIF layer. The operation and is similar

to or, except that it and’s the layers with the material in the CIF layer (in other words, any CIF

material that doesn’t lie under material in layers is removed from the CIF layer). And-not finds all

areas covered by layers and erases current CIF material from those areas. Grow and shrink will

uniformly grow or shrink the current CIF layer by amount units, where amount is specified in CIF

units, not Magic units. The squares-grid operator grows layers non-uniformly to snap to the grid

spacing indicated by amount. This can be used to ensure that features fall on a required minimum

grid.

The three “bloat” operations bloat-or, bloat-min, and bloat-max, provide selective forms of

growing. In these statements, all the layers must be Magic layers. Each operation examines all the

tiles in layers, and grows the tiles by a different distance on each side, depending on the rest of

the line. Each pair layers2 amount specifies some tile types and a distance (in CIF units). Where

–19–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

a tile of type layers abuts a tile of type layers2, the first tile is grown on that side by amount. The

result is or’ed with the current contents of the CIF plane. The layer “*” may be used as layers2 to

indicate all tile types. Where tiles only have a single type of neighbor on each side, all three forms

of bloat are identical. Where the neighbors are different, the three forms are slightly different, as

illustrated in Figure 12.3. Note: all the layers specified in any given bloat operation must lie on a

single Magic plane. For bloat-or all distances must be positive. In bloat-max and bloat-min the

distances may be negative to provide a selective form of shrinking.

A CB

D

A CB

D

A CB

D

E B E B E B

bloat-or A * 100 C,E 200 bloat-max A * 100 C,E 200 bloat-min A * 100 C,E 200

Figure 2: The three different forms of bloat behave slightly differently when two different bloat

distances apply along the same side of a tile. In each of the above examples, the CIF that would

be generated is shown in bold outline. If bloat-or is specified, a jagged edge may be generated,

as on the left. If bloat-max is used, the largest bloat distance for each side is applied uniformly to

the side, as in the center. If bloat-min is used, the smallest bloat distance for each side is applied

uniformly to the side, as on the right.

In retrospect, it’s not clear that bloat-max and bloat-min are very useful operations. The

problem is that they operate on tiles, not regions. This can cause unexpected behavior on concave

regions. For example, if the region being bloated is in the shape of a “T”, a single bloat factor will

be applied to the underside of the horizontal bar. If you use bloat-max or bloat-min, you should

probably specify design-rules that require the shapes being bloated to be convex.

The fourth bloat operation bloat-all takes all tiles of types layers, and grows to include all

neighboring tiles of types layers2. This is very useful to generate marker layers or implant layers

for specific devices, where the marker or implant must cover both the device and its contacts. Take

the material of the device and use bloat-all to expand into the contact areas.

An important geometric operation for creating contact cuts is squares. It examines each tile

on the CIF plane, and replaces that tile with one or more squares of material. Each square is size

CIF units across, and squares are separated by separation units. A border of at least border units is

left around the edge of the original tile, if possible. This operation is used to generate contact vias,

as in Figure 3. If only one argument is given in the squares statement, then separation defaults

to size and border defaults to size/2. If a tile doesn’t hold an integral number of squares, extra

space is left around the edges of the tile and the squares are centered in the tile. If the tile is so

small that not even a single square can fit and still leave enough border, then the border is reduced.

If a square won’t fit in the tile, even with no border, then no material is generated. The squares

operation must be used with some care, in conjunction with the design rules. For example, if there

are several adjacent skinny tiles, there may not be enough room in any of the tiles for a square, so

no material will be generated at all. Whenever you use the squares operator, you should use design

–20–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

rules to prohibit adjacent contact tiles, and you should always use the no overlap rule to prevent

unpleasant hierarchical interactions. The problems with hierarchy are discussed in Section 12.6

below, and design rules are discussed in Section 15.

separation

size

border

Figure 3: The squares operator chops each tile up into squares, as determined by the border, size,

and separation parameters. In the example, the bold lines show the CIF that would be generated by

a squares operation. The squares of material are always centered so that the borders on opposite

sides are the same.

The squares-grid operator is similar to squares and takes the same arguments, except for

the additional optional x and y offsets (which default to 1). Where the squares operator places

contacts on the half-lambda grid, the squares-grid operator places contacts on an integer grid of x

and y. This is helpful where manufacturing grid limitations do not allow half-lambda coordinates.

However, it is necessary then to enforce a “no-overlap” rule for contacts in the DRC section to

prevent incorrect contacts cuts from being generated in overlapping subcells. The squares-grid

operator can also be used with x and y values to generate fill geometry, or to generate offset contact

cut arrays for pad vias.

The slots operator is similar to squares operator, but as the name implies, the resulting shapes

generated are rectangular, not (necessarily) square. Slots are generated inside individual tiles, like

the squares operator, so each slots operation is separately oriented relative to the tile’s long and

short edges. Separate border, size, and separation values can be specified for the short and long

dimensions of the tile. This operator can be used in a number of situations:

1. Generate square contact cuts with different border requirements on the short and long sides,

as required for a number of deep submicron processes like 90 nanometer.

2. Automatically generate slots in large metal areas, which most processes require. Note, how-

ever, that it is impossible to correctly generate all slots, so this cannot completely replace the

widespacing DRC rule.

3. Generate slot contacts.

4. Generate fill geometry.

5. Generate marker layers for resitors that abut the position of contacts, a generally-accepted

way to define a resistor area boundary.

–21–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

Note that the slots operator comes in three different forms with different numbers of argu-

ments. With only three arguments (short side description only), the slots operator creates stripes

that extend to the edge of the tile. With four arguments (short side description plus long side bor-

der dimension only), the slots operator create stripes that extend to the edge of the tile, with an

appropriate border spacing at each end. In these two cases, the slots have variable length that is

set by the size of the tile. In the final form, all short and long side dimensions are declared. The

generated slots are of fixed size, and like the squares operator, their positions will be adjusted to

center them on the tile. The offset is intended to let each row of slots be offset from the previous

one by a fixed amount, but is currently unimplemented and has no effect.

sep_long

no size or
separation
givensize_long

border_long

border
size

sep

Figure 4: The slots operator chops each tile up into rectangles.

The bbox operator generates a single rectangle that encompasses the bounding box of the cell.

This is useful for the occasional process that requires marker or implant layers covering an entire

design. The variant bbox top will generate a rectangle encompassing the bounding box of the cell,

but will only do so for the top-level cell of the design.

12.4 Labels

There is an additional statement permitted in the cifoutput section as part of a layer description:

labels Magiclayers

This statement tells Magic that labels attached to Magic layers Magiclayers are to be associated

with the current CIF layer. Each Magic layer should only appear in one such statement for any

given CIF style. If a Magic layer doesn’t appear in any labels statement, then it is not attached to

a specific layer when output in CIF.

12.5 Calma (GDS II Stream format) layers

Each layer description in the cifoutput section may also contain one of the following statements:

gds gdsNumber gdsType

calma gdsNumber gdsType

–22–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

Although the format is rarely referred to as “Calma” anymore, the keyword is retained for

backwards compatibility with format 27 (and earlier) files.

This statement tells Magic which layer number and data type to use when the gds command

outputs GDS II Stream format for this defined CIF layer. Both gdsNumber and gdsType should

be positive integers, between 0 and 63. Each CIF layer should have a different gdsNumber. If

there is no gds line for a given CIF layer, then that layer will not be output by the “gds write”

command. The reverse is not true: every generated output layer must have a defined CIF layer

type, even if the foundry only supports GDS format. In such case, the CIF layer name may violate

the restrictive 4-character format required by the CIF syntax specification, and may be used to

provide a reasonable, human-readable descriptive name of the GDS layer.

100

(a) (b) (c)

Figure 5: If the operator grow 100 is applied to the shapes in (a), the merged shape in (b) results.

If the operator shrink 100 is applied to (b), the result is (c). However, if the two original shapes

in (a) belong to different cells, and if CIF is generated separately in each cell, the result will be

the same as in (a). Magic handles this by outputting additional information in the parent of the

subcells to fill in the gap between the shapes.

12.6 Hierarchy

Hierarchical designs make life especially difficult for the CIF generator. The CIF corresponding to

a collection of subcells may not necessarily be the same as the sum of the CIF’s of the individual

cells. For example, if a layer is generated by growing and then shrinking, nearby features from

different cells may merge together so that they don’t shrink back to their original shapes (see

Figure 5). If Magic generates CIF separately for each cell, the interactions between cells will not

be reflected properly. The CIF generator attempts to avoid these problems. Although it generates

CIF in a hierarchical representation that matches the Magic cell structure, it tries to ensure that

the resulting CIF patterns are exactly the same as if the entire Magic design had been flattened

into a single cell and then CIF were generated from the flattened design. It does this by looking

in each cell for places where subcells are close enough to interact with each other or with paint in

the parent. Where this happens, Magic flattens the interaction area and generates CIF for it; then

Magic flattens each of the subcells separately and generates CIF for them. Finally, it compares the

CIF from the subcells with the CIF from the flattened parent. Where there is a difference, Magic

outputs extra CIF in the parent to compensate.

–23–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

Magic’s hierarchical approach only works if the overall CIF for the parent ends up covering at

least as much area as the CIFs for the individual components, so all compensation can be done by

adding extra CIF to the parent. In mathematical terms, this requires each geometric operation to

obey the rule

Op(A ∪ B) ⊇ Op(A) ∪ Op(B)

The operations and, or, grow, and shrink all obey this rule. Unfortunately, the and-not, bloat,

and squares operations do not. For example, if there are two partially-overlapping tiles in different

cells, the squares generated from one of the cells may fall in the separations between squares in

the other cell, resulting in much larger areas of material than expected. There are two ways around

this problem. One way is to use the design rules to prohibit problem situations from arising. This

applies mainly to the squares operator. Tiles from which squares are made should never be allowed

to overlap other such tiles in different cells unless the overlap is exact, so each cell will generate

squares in the same place. You can use the exact overlap design rule for this.

The second approach is to leave things up to the designer. When generating CIF, Magic issues

warnings where there is less material in the children than the parent. The designer can locate these

problems and eliminate the interactions that cause the trouble. Warning: Magic does not check the

squares operations for hierarchical consistency, so you absolutely must use exact overlap design

rule checks! Right now, the cifoutput section of the technology is one of the trickiest things in the

whole file, particularly since errors here may not show up until your chip comes back and doesn’t

work. Be extremely careful when writing this part!

Another problem with hierarchical generation is that it can be very slow, especially when there

are a number of rules in the cifoutput section with very large grow or shrink distances, such that

magic must always expand its area of interest by this amount to be sure of capturing all possible

layer interactions. When this “halo” distance becomes larger than the average subcell, much of the

design may end up being processed multiple times. Noticeably slow output generation is usually

indicative of this problem. It can be alleviated by keeping output rules simple. Note that basic

AND and OR operations do not interact between subcells, so that rules made from only these

operators will not be processed during subcell interaction generation. Remember that typically,

subcell interaction paint will only be generated for layers that have a “grow” operation followed

by a “shrink” operation. This common ruleset lets layers that are too closely spaced to be merged

together, thus eliminating the need for a spacing rule between the layers. But consider carefully

before implementing such a rule. Implementing a DRC spacing rule instead may eliminate a huge

amount of output processing. Usually this situation crops up for auto-generated layers such as

implants and wells, to prevent magic from auto-generating DRC spacing violations. But again,

consider carefully whether it might be better to require the layout engineer to draw the layers

instead of attempting to auto-generate them.

12.7 Render statements

At the end of each style in the cifoutput section, one may include render statements, one per

defined CIF/GDS layer. These render statements are used by the 3-D drawing window in the

OpenGL graphics version of magic, and are also used by the “cif see” command to set the style

painted. The syntax for the statement is as follows:

–24–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

cifinput

style lambda=1.0(gen)

scalefactor 100

layer m1 CMF

labels CMF

layer ndiff CSN

and CAA

layer nsd CWN

and CSN

and CAA

layer nfet CPG

and CAA

and CSN

layer ndc CCA

grow 100

and CAA

and CWP

and CSN

and CMF

layer nncont CCA

grow 100

and CAA

and CSN

and CWN

and CMF

calma CAA 1 *

calma CCA 2 *

calma CMF 4 *

calma CPG 7 *

calma CSN 8 *

calma CWN 11 *

calma CWP 12 *

end

Table 10: Part of the cifinput section. The order of the layers is important, since each Magic layer

overrides the previous ones just as if they were painted by hand.

render cif layer style name height thickness

The cif layer is any valid layer name defined in the same cifoutput section where the render

statement occurs. The style name is the name or number of a style in the styles file. The names are

the same as used in the styles section of the technology file. height and thickness are effectively

dimensionless units and are used for relative placement and scaling of the three-dimensional layout

view (such views generally have a greatly expanded z-axis scaling). By default, all layers are given

–25–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

the same style and a zero height and thickness, so effectively nothing useful can be seen in the 3-D

view without a complete set of render statements.

13 Cifinput section

In addition to writing CIF, Magic can also read in CIF files using the :cif read file command. The

cifinput section of the technology file describes how to convert from CIF mask layers to Magic tile

types. In addition, it provides information to the Calma reader to allow it to read in Calma GDS

II Stream format files. The cifinput section is very similar to the cifoutput section. It can contain

several styles, with a line of the form

style name

used to end the description of the previous style (if any), and start a new CIF input style called

name. If no initial style name is given, the name default is assigned. Each style must have a

statement of the form

scalefactor scale [nanometers]

to indicate the output scale relative to Magic units. Without the optional keyword nanome-

ters, scale describes how many hundredths of a micron correspond to one unit in Magic. With

nanometers declared, scale describes how many nanometers correspond to one unit in Magic.

Like the cifoutput section, each style consists of a number of layer descriptions. A layer

description contains one or more lines describing a series of geometric operations to be performed

on CIF layers. The result of all these operations is painted on a particular Magic layer just as if the

user had painted that information by hand. A layer description begins with a statement of the form

layer magicLayer [layers]

In the layer statement, magicLayer is the Magic layer that will be painted after performing the

geometric operations, and layers is an optional list of CIF layers. If layers is specified, it is the

initial value for the layer being built up. If layers isn’t specified, the layer starts off empty. As in

the cifoutput section, each line after the layer statement gives a geometric operation that is applied

to the previous contents of the layer being built in order to generate new contents for the layer. The

result of the last geometric operation is painted into the Magic database.

The geometric operations that are allowed in the cifinput section are a subset of those permitted

in the cifoutput section:

or layers

and layers

and-not layers

grow amount

shrink amount

–26–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

In these commands the layers must all be CIF layers, and the amounts are all CIF distances

(centimicrons, unless the keyword nanometers has been used in the scalefactor specification). As

with the cifoutput section, layers can only be specified in simple comma-separated lists: tildes and

slashes are not permitted.

When CIF files are read, all the mask information is read for a cell before performing any of the

geometric processing. After the cell has been completely read in, the Magic layers are produced

and painted in the order they appear in the technology file. In general, the order that the layers

are processed is important since each layer will usually override the previous ones. For example,

in the scmos tech file shown in Table 10 the commands for ndiff will result in the ndiff layer

being generated not only where there is only ndiffusion but also where there are ntransistors and

ndcontacts. The descriptions for ntransistor and ndcontact appear later in the section, so those

layers will replace the ndiff material that was originally painted.

Labels are handled in the cifinput section just like in the cifoutput section. A line of the form

labels layers

means that the current Magic layer is to receive all CIF labels on layers. This is actually just

an initial layer assignment for the labels. Once a CIF cell has been read in, Magic scans the label

list and re-assigns labels if necessary. In the example of Table 10, if a label is attached to the CIF

layer CPG then it will be assigned to the Magic layer poly. However, the polysilicon may actually

be part of a poly-metal contact, which is Magic layer pcontact. After all the mask information has

been processed, Magic checks the material underneath the layer, and adjusts the label’s layer to

match that material (pcontact in this case). This is the same as what would happen if a designer

painted poly over an area, attached a label to the material, then painted pcontact over the area.

No hierarchical mask processing is done for CIF input. Each cell is read in and its layers are

processed independently from all other cells; Magic assumes that there will not be any unpleasant

interactions between cells as happens in CIF output (and so far, at least, this seems to be a valid

assumption).

If Magic encounters a CIF layer name that doesn’t appear in any of the lines for the current CIF

input style, it issues a warning message and ignores the information associated with the layer. If

you would like Magic to ignore certain layers without issuing any warning messages, insert a line

of the form

ignore cifLayers

where cifLayers is a comma-separated list of one or more CIF layer names.

Calma layers are specified via calma lines, which should appear at the end of the cifinput

section. They are of the form:

calma cifLayer calmaLayers calmaTypes

The cifLayer is one of the CIF types mentioned in the cifinput section. Both calmaLayers and

calmaTypes are one or more comma-separated integers between 0 and 63. The interpretation of

a calma line is that any Calma geometry whose layer is any of the layers in calmaLayers, and

whose type is any of the types in calmaTypes, should be treated as the CIF layer cifLayer. Either or

both of calmaLayers and calmaTypes may be the character * instead of a comma-separated list of

–27–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

integers; this character means all layers or types respectively. It is commonly used for calmaTypes

to indicate that the Calma type of a piece of geometry should be ignored.

Just as for CIF, Magic also issues warnings if it encounters unknown Calma layers while read-

ing Stream files. If there are layers that you’d like Magic to ignore without issuing warnings, assign

them to a dummy CIF layer and ignore the CIF layer.

14 Lef section

This section defines a mapping between magic layers and layers that may be found in LEF and DEF

format files. Without the section, magic cannot read a LEF or DEF file. The LEF and DEF layer

declarations are usually simple and straightforward (as they typically define metal layers only), so

often it will suffice to insert a plain vanilla lef section into a technology file if one is missing. The

lef section was introduced in technology file format 28, and is therefore absent from all .tech27
technology files. All of the statements in the lef section have the same format:

layer magic-type lefdef-type . . .

cut magic-type lefdef-type . . .

route|routing magic-type lefdef-type . . .

obstruction magic-type lefdef-type . . .

masterslice magic-type lefdef-type . . .

overlap magic-type lefdef-type . . .

Each statement defines a mapping between a Magic layer type magic-type and one or more type

names lefdef-type (space-separated) that might be encountered in a LEF or DEF file. The different

command names all refer to different type classes defined by the LEF/DEF specification. For most

purposes, it is only necessary to use the layer statement. If the magic type is a contact type, then

the layer statement is equivalent to specifying cut; otherwise, it is equivalent to route.

Table 11 is a typical lef section for a 5-metal technology, which encompasses the most com-

monly used layer names found in LEF and DEF files.

15 Mzrouter section

This section defines the layers and contacts available to the Magic maze router, mzrouter, and

assigns default costs for each type. Default widths and spacings are derived from the drc section

of the technology file (described below) but can be overridden in this section. Other mzrouter

parameters, for example, search rate and width, can also be specified in this section. The syntax and

function of the lines in the mzrouter section of the technology file are specified in the subsections

below. Each set of specifications should be headed by a style line. Routelayer and routecontact

specifications should precede references to them.

15.1 Styles

The mzrouter is currently used in two contexts, interactively via the iroute command, and as a

subroutine to the garouter for stem generation. To permit distinct parameters for these two uses,

–28–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

lef

masterslice ndiff diffusion active

masterslice poly poly POLY1 pl

routing m1 m1 metal1 METAL1 METAL 1

routing m2 m2 metal2 METAL2 METAL 2

routing m3 m3 metal3 METAL3 METAL 3

routing m4 m4 metal4 METAL4 METAL 4

routing m5 m5 metal5 METAL5 METAL 5

cut pc cont1 pl-m1

cut m2c via1 cont2 VIA12 m1-m2

cut m3c via2 cont3 VIA23 m2-m3

cut m4c via3 cont4 VIA34 m3-m4

cut m5c via4 cont5 VIA45 m4-m5

overlap comment overlap OVERLAP

end

Table 11: A plain vanilla lef section.

the lines in the mzrouter section are grouped into styles. The lines pertaining to the irouter should

be preceded by

style irouter

and those pertaining to the garouter should be preceded by the specification

style garouter

Other styles can be specified, but are currently not used. Table 12 shows the mzrouter section

from the scmos technology.

15.2 Layers

Layer lines define the route-layers available to the maze router in that style. They have the follow-

ing form:

layer type hCost vCost jogCost hintCost

Here type is the name of the tiletype of the layer and hCost, vCost, jogCost and hintCost,

are non-negative integers specifying the cost per unit horizontal distance, cost per unit vertical

distance, cost per jog, and cost per unit area of deviation from magnets, respectively. Route layers

for any given style must lie in distinct planes.

–29–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

mzrouter

style irouter

layer m2 32 64 256 1

layer m1 64 32 256 1

layer poly 128 128 512 1

contact m2contact metal1 metal2 1024

contact pcontact metal1 poly 2056

notactive poly pcontact

style garouter

layer m2 32 64 256 1

layer m1 64 32 256 1

contact m2contact metal1 metal2 1024

end

Table 12: Mzrouter section for the scmos technology.

15.3 Contacts

Contact lines specify the route-contacts available to the mzrouter in the current style. They have

the following form:

contact type routeLayer1 routeLayer2 cost

Here type is the tiletype of the contact, routeLayer1 and routeLayer2 are the two layers con-

nected by the contact, and cost is a nonnegative integer specifying the cost per contact.

15.4 Notactive

It maybe desirable to have a layer or contact available to the maze router, but default to off, i.e., not

be used by the mzrouter until explicitly made active. Route-types (route-layers or route-contacts)

can be made to default to off with the following specification:

notactive route-type . . . [route-typen]

15.5 Search

The search rate, width, and penalty parameters can be set with a specification of the form:

search rate width penalty

Here rate and width are positive integers. And penalty is a positive rational (it may include a

decimal point). See the irouter tutorial for a discussion of these parameters. (Note that penalty

is a “wizardly” parameter, i.e., it is interactively set and examined via iroute wizard not iroute

search). If no search line is given for a style, the overall mzrouter defaults are used.

–30–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

15.6 Width

Appropriate widths for route-types are normally derived from the drc section of the technology

file. These can be overridden with width specifications of the following form:

width route-type width

Here width is a positive integer.

15.7 Spacing

Minimum spacings between routing on a route-type and other types are derived from the design

rules. These values can be overridden by explicit spacing specifications in the mzrouter section.

Spacing specifications have the following form:

spacing routetype type1 spacing1 . . . [typen spacingn]

Spacing values must be nonnegative integers or NIL. The special type SUBCELL can be used

to specify minimum spacing to unexpanded subcells.

16 Drc section

The design rules used by Magic’s design rule checker come entirely from the technology file. We’ll

look first at two simple kinds of rules, width and and spacing. Most of the rules in the drc section

are one or the other of these kinds of rules.

16.1 Width rules

The minimum width of a collection of types, taken together, is expressed by a width rule. Such a

rule has the form:

width type-list width error

where type-list is a set of tile types (see Section 8 for syntax), width is an integer, and error

is a string, enclosed in double quotes, that can be printed by the command :drc why if the rule is

violated. A width rule requires that all regions containing any types in the set types must be wider

than w in both dimensions. For example, in Table 14, the rule

width nwell 6 " N-Well width must be at least 6 (MOSIS rule #1.1)"

means that nwells must be at least 6 units wide whenever they appear. The type-list field may

contain more than a single type, as in the following rule:

width allDiff 2 " Diffusion width must be at least 2 (MOSIS rule #2.1)"

–31–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

#define allDiff ndiff,pdiff,ndc/a,pdc/a,ppcont/a,nncont/a,pfet,nfet,psd,nsd

#define extPoly poly,pcontact

#define extM1 metal1,pcontact/m1,ndc/m1,ppcont/m1,pdc/m1,nncont/m1

#define extM2 metal2,m2contact/m2

Table 13: Abbreviations for sets of tile types.

width pwell 6 " P-Well width must be at least 6 (MOSIS rule #1.1)"

width nwell 6 " N-Well width must be at least 6 (MOSIS rule #1.1)"

width allDiff 2 " Diffusion width must be at least 2 (MOSIS rule #2.1)"

width allPoly 2 " Polysilicon width must be at least 2 (MOSIS rule #3.1)"

Table 14: Some width rules in the drc section.

which means that all regions consisting of the types containing any kind of diffusion be at least

2 units wide. Because many of the rules in the drc section refer to the same sets of layers, the

#define facility of the C preprocessor is used to define a number of macros for these sets of layers.

Table 13 gives a complete list.

All of the layers named in any one width rule must lie on the same plane. However, if some of

the layers are contacts, Magic will substitute a different contact image if the named image isn’t on

the same plane as the other layers.

16.2 Spacing rules

The second simple kind of design rule is a spacing rule. It comes in two flavors: touching ok, and

touching illegal, both with the following syntax:

spacing types1 types2 distance flavor error

The first flavor, touching ok, does not prohibit types1 and types2 from being immediately

adjacent. It merely requires that any type in the set types1 must be separated by a “Manhattan”

distance of at least distance units from any type in the set types2 that is not immediately adjacent

to the first type. See Figure 16.2 for an illustration of Manhattan distance for design rules. As an

example, consider the metal1 separation rule:

spacing allPoly allPoly 2 touching ok \�

"Polysilicon spacing must be at least 2 (MOSIS rule #3.2)"

This rule is symmetric (types1 is equal to types2), and requires, for example, that a pcontact

be separated by at least 2 units from a piece of polysilicon. However, this rule does not prevent

the pcontact from touching a piece of poly. In touching ok rules, all of the layers in both types1

and types2 must be stored on the same plane (Magic will substitute different contact images if

necessary).

TOUCHING OK SPACING RULES DO NOT WORK FOR VERY LARGE SPACINGS

(RELATIVE TO THE TYPES INVOLVED). SEE FIGURE 6 FOR AN EXPLANATION. If the

–32–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

Manhattan distanceEuclidean distance

Figure 6: For design rule checking, the Manhattan distance between two horizontally or vertically

aligned points is just the normal Euclidean distance. If they are not so aligned, then the Manhattan

distance is the length of the longest side of the right triangle forming the diagonal line between the

points.

spacing allPoly allPoly 2 touching ok \�

" Polysilicon spacing must be at least 2 (MOSIS rule #3.2)"

spacing pfet nncont,nnd 3 touching illegal \�

" Transistors must be separated from substrate contacts by 3 (MOSIS rule #4.1)"

spacing pc allDiff 1 touching illegal \�

" Poly contact must be 1 unit from diffusion (MOSIS rule #5B.6)"

Table 15: Some spacing rules in the drc section.

spacing to be checked is greater than the width of one of the types involved plus either its self-

spacing or spacing to a second involved type, touching ok spacing may not work properly: a

violation can be masked by an intervening touching type. In such cases the rule should be written

using the edge4way construct described below.

The second flavor of spacing rule, touching illegal, disallows adjacency. It is used for rules

where types1 and types2 can never touch, as in the following:

spacing pc allDiff 1 touching illegal \�

"Poly contact must be 1 unit from diffusion (MOSIS rule #5B.6)"

Pcontacts and any type of diffusion must be at least 1 unit apart; they cannot touch. In touch-

ing illegal rules types1 and types2 may not have any types in common: it would be rather strange

not to permit a type to touch itself. In touching illegal rules, types1 and types2 may be spread

across multiple planes; Magic will find violations between material on different planes.

–33–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

t1 t2 t2

A B

Figure 7: The touching ok rules cancels spacing checks if the material is touching. This means that

even distant material won’t be checked for spacing. If the rule applied at edge A is a touching ok

rule between material t1 and t2, then no check will be made between the t1 material and the t2

material on the far right side of the diagram. If this check was desired, it could be accomplished in

this case by a edge4way check from edge B. This would not work in general, though, because that

check could also be masked by material of type t2, causing the touching ok rule to be invoked.

16.3 Wide material spacing rules

Many fabrications processes require a larger distance between layers when the width and length of

one of those layers exceeds a certain minimum dimension. For instance, a process might declare

that the normal spacing between metal1 lines is 3 microns. However, if a metal1 line exceeds a

width of 100 microns, then the spacing to other unrelated metal1 lines must increase to 10 microns.

This situation is covered by the widespacing rule. The syntax for widespacing is as follows:

widespacing types1 wwidth types2 distance flavor error

The widespacing rule matches the syntax of spacing in all respects except for the addition of

the parameter wwidth, which declares the minimum width of layers of type(s) types1 that triggers

the rule. So for the example above, the correct widespacing rule would be (assuming 1 magic unit

= 1 micron):

widespacing allMetal1 100 allMetal1 10 touching ok \�

"Space to wide Metal1 (length and width >100) must be at least 10"

16.4 Surround rule

The surround rule specifies what distance a layer must surround another, and whether the presence

of the surrounding material is optional or mandatory. This rule is designed for materials which

must completely surround another, such as metal around a contact cut or MiM capacitor layer. The

syntax is:

surround types1 types2 distance presence error

–34–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

t1 t2t2
A B

t1

wwidth wdist
error area

dist

Figure 8: The widespacing rule covers situations like that shown above, in which material of type

t1 normally must be dist units away from type t2 (situation A). However, if both dimensions of

material type t1 are larger than or equal to some width wwidth (situation B), then the spacing must

be increased to wdist.

and states that the layers in types2 must surround the layers in types1 by an amound distance

lambda units. The value of presence must be one of the keywords absence ok or absence illegal.

When presence is absence illegal, then types types2 must always be present when types types1

are present. When presence is absence ok, types types1 may exist outside of types types2 without

error, but where they coincide, types types2 must overlap types1 by the amount distance.

16.5 Overhang rule

rule specifies what distance a layer must overhang another at an intersection. This is used, for

example, to specify the length of polysilicon end-caps on transistors, which is the distance that the

polysilicon gate must extend beyond the defined gate area of the transistor to ensure a correctly

operating device. The syntax is:

overhang types1 types2 distance error

and states that layers in types1 must overhang layers in types2 by an amount distance lambda

units. The rule flags the complete absence of types types1, but does not prohibit the use of types1

as a bridge (that is, with types types2 on either side of types1, which will generally be covered by

a separate spacing rule, and which may have a different spacing requirement).

16.6 Rectangle-only rule

The rect only rule is used to denote layers that must be rectangular; that is, they cannot bend,

or have notches or tabs. Generally, this is used for contacts, so that the CIF output operator

squares will be guaranteed to generate a correct contact. This is due to magic’s corner-stitching

tile database, where bends, notches, tabs, and slots will break up an otherwise continuous patch of

material into potentially many small tiles, each one of which might be too small to fit a contact cut.

–35–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

rect only types error

16.7 Edge rules

The width and spacing rules just described are actually translated by Magic into an underlying,

edge-based rule format. This underlying format can handle rules more general than simple widths

and spacings, and is accessible to the writer of a technology file via edge rules. These rules are

applied at boundaries between material of two different types, in any of four directions as shown

in Figure 9. The design rule table contains a separate list of rules for each possible combination of

materials on the two sides of an edge.

t1 t2 t1t2

t1

t2

t1

t2

d d

d d

Figure 9: Design rules are applied at the edges between tiles in the same plane. A rule is specified

in terms of type t1 and type t2, the materials on either side of the edge. Each rule may be applied

in any of four directions, as shown by the arrows. The simplest rules require that only certain mask

types can appear within distance d on t2’s side of the edge.

In its simplest form, a rule specifies a distance and a set of mask types: only the given types are

permitted within that distance on type2’s side of the edge. This area is referred to as the constraint

region. Unfortunately, this simple scheme will miss errors in corner regions, such as the case shown

in Figure 10. To eliminate these problems, the full rule format allows the constraint region to be

extended past the ends of the edge under some circumstances. See Figure 11 for an illustration of

the corner rules and how they work. Table 16 gives a complete description of the information in

each design rule.

Edge rules are specified in the technology file using the following syntax:

edge types1 types2 d OKTypes cornerTypes cornerDist error [plane]

Both types1 and types2 are type-lists. An edge rule is generated for each pair consisting of a

type from types1 and a type from types2. All the types in types1, types2, and cornerTypes must

lie on a single plane. See Figure 11 for an example edge rule. It is sometimes useful to specify a

null list, i.e., 0, for OKTypes or CornerTypes. Null OKTypes means no edges between types1 and

–36–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

types2 are OK. Null CornerTypes means no corner extensions are to be checked (corner extensions

are explained below).

Some of the edge rules in Magic have the property that if a rule is violated between two pieces

of geometry, the violation can be discovered looking from either piece of geometry toward the

other. To capitalize on this, Magic normally applies an edge rule only in two of the four possible

directions: bottom-to-top and left-to-right, reducing the work it has to do by a factor of two. Also,

the corner extension is only performed to one side of the edge: to the top for a left-to-right rule,

and to the left for a bottom-to-top rule. All of the width and spacing rules translate neatly into edge

rules.

However, you’ll probably find it easiest when you’re writing edge rules to insist that they be

checked in all directions. To do this, write the rule the same way except use the keyword edge4way

instead of edge:

edge4way nfet ndiff 2 ndiff,ndc ndiff 2 \�

" Diffusion must overhang transistor by at least 2"

Not only are edge4way rules checked in all four directions, but the corner extension is per-

formed on both sides of the edge. For example, when checking a rule from left-to-right, the corner

extension is performed both to the top and to the bottom. Edge4way rules take twice as much time

to check as edge rules, so it’s to your advantage to use edge rules wherever you can.

Normally, an edge rule is checked completely within a single plane: both the edge that triggers

the rule and the constraint area to check fall in the same plane. However, the plane argument can be

specified in an edge rule to force Magic to perform the constraint check on a plane different from

the one containing the triggering edge. In this case, OKTypes must all be tile types in plane. This

feature is used, for example, to ensure that polysilicon and diffusion edges don’t lie underneath

metal2 contacts:

edge4way allPoly ˜(allPoly)/active 1 ˜m2c/metal2 ˜(allPoly)/active 1 \�

spacepoly

OKTypes = not poly

(a)

poly

poly

(b)

Figure 10: If only the simple rules from Figure 9 are used, errors may go unnoticed in corner

regions. For example, the polysilicon spacing rule in (a) will fail to detect the error in (b).

–37–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

B

A

cornerTypes
cornerDist

OKTypes

t1 t2

d

(a) (b)

notpoly

notpoly

2

2

poly space

poly

notpoly notpoly

poly

(c) (d)

Figure 11: The complete design rule format is illustrated in (a). Whenever an edge has type1 on its

left side and type2 on its right side, the area A is checked to be sure that only OKTypes are present.

If the material just above and to the left of the edge is one of cornerTypes, then area B is also

checked to be sure that it contains only OKTypes. A similar corner check is made at the bottom of

the edge. Figure (b) shows a polysilicon spacing rule, (c) shows a situation where corner extension

is performed on both ends of the edge, and (d) shows a situation where corner extension is made

only at the bottom of the edge. If the rule described in (d) were to be written as an edge rule, it

would look like:

edge poly space 2 ˜poly ˜poly 2 \�

" Poly-poly separation must be at least 2"

" Via must be on a flat surface (MOSIS rule #8.4,5)" metal2

Magic versions using techfile formats more recent than 28 are generally more clever about

determining the correct plane from OKTypes when they differ from the triggering types, and the

situation is unambiguous (use of “space” in rules tends to introduce ambiguity, since space tiles

appear on all planes).

–38–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

Parameter Meaning

type1 Material on first side of edge.

type2 Material on second side of edge.

d Distance to check on second side of edge.

OKTypes List of layers that are permitted within d units on

second side of edge. (OKTypes=0 means never

OK)

cornerTypes List of layers that cause corner extension. (cor-

nerTypes=0 means no corner extension)

cornerDist Amount to extend constraint area when corner-

Types matches.

plane Plane on which to check constraint region (de-

faults to same plane as type1 and type2 and cor-

nerTypes).

Table 16: The parts of an edge-based rule.

edge4way ppcont,ppd ndiff,ndc,nfet 3 ndiff,ndc,nfet ndiff,ndc,nfet 3 \�

" Ndiff must be 3 wide if it abuts ppcont or ppd (MOSIS rule #??)"

edge4way allPoly ˜(allPoly)/active 3 ˜pc/active ˜(allPoly)/active 3 \�

" Poly contact must be at least 3 from other poly (MOSIS rule #5B.4,5)"

edge4way allPoly ˜(allPoly)/active 1 ˜m2c/metal2 ˜(allPoly)/active 1 \�

" Via must be on a flat surface (MOSIS rule #8.4,5)" metal2

Table 17: Some edge rules in the drc section.

16.8 Subcell Overlap Rules

In order for CIF generation and circuit extraction to work properly, certain kinds of overlaps be-

tween subcells must be prohibited. The design-rule checker provides two kinds of rules for re-

stricting overlaps. They are

exact overlap type-list

no overlap type-list1 type-list2

In the exact overlap rule, type-list indicates one or more tile types. If a cell contains a tile of

one of these types and that tile is overlapped by another tile of the same type from a different cell,

then the overlap must be exact: the tile in each cell must cover exactly the same area. Abutment

between tiles from different cells is considered to be a partial overlap, so it is prohibited too.

This rule is used to ensure that the CIF squares operator will work correctly, as described in

Section 12.6. See Table 18 for the exact overlap rule from the standard scmos technology file.

The no overlap rule makes illegal any overlap between a tile in type-list1 and a tile in type-list2.

You should rarely, if ever, need to specify no overlap rules, since Magic automatically prohibits

many kinds of overlaps between subcells. After reading the technology file, Magic examines the

–39–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

exact overlap m2c,ndc,pdc,pc,ppcont,nncont

no overlap pfet,nfet pfet,nfet

Table 18: Exact overlap rule in the drc section.

paint table and applies the following rule: if two tile types A and B are such that the result of

painting A over B is neither A nor B, or the result of painting B over A isn’t the same as the

result of painting A over B, then A and B are not allowed to overlap. Such overlaps are prohibited

because they change the structure of the circuit. Overlaps are supposed only to connect things

without making structural changes. Thus, for example, poly can overlap pcontact without violating

the above rules, but poly may not overlap diffusion because the result is efet, which is neither poly

nor diffusion. The only no overlap rules you should need to specify are rules to keep transistors

from overlapping other transistors of the same type.

16.9 Background checker step size

Magic’s background design-rule checker breaks large cells up into smaller pieces, checking each

piece independently. For very large designs, the number of pieces can get to be enormous. If

designs are large but sparse, the performance of the design-rule checker can be improved tremen-

dously by telling it to use a larger step size for breaking up cells. This is done as follows:

stepsize stepsize

which causes each cell to be processed in square pieces of at most stepsize by stepsize units.

It is generally a good idea to pick a large stepsize, but one that is small enough so each piece will

contain no more than 100 to 1000 rectangles.

Note that the distances declared in the DRC section are used to determine the “halo” of possible

interactions around a tile edge. Magic must consider all paint in all cells simultaneously; thus

for each edge in the design, magic must flatten the hierarchy around it to a distance equal to

the interaction halo. Clearly this has a huge impact on processing time. Because the DRC is

interactive, the performance hit can be noticeable to downright irritating. Often this performance

hit can be greatly reduced by removing rules with large distance measures, such as rules involving

distances to pads, and widespacing rules. If this is a problem, consider using one technology file

for layout, and one which can be used “offline” to do a slow, non-interactive DRC check for pad

and widespacing rules on an entire project layout.

17 Extract section

The extract section of a technology file contains the parameters used by Magic’s circuit extractor.

Each line in this section begins with a keyword that determines the interpretation of the remainder

of the line. Table 19 gives an example extract section.

This section is like the cifinput and cifoutput sections in that it supports multiple extraction

styles. Each style is preceded by a line of the form

–40–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

extract

style lambda=0.7

lambda 70

step 100

sidehalo 4

resist poly,pfet,nfet 60000

resist pc/a 50000

resist pdiff,ppd 120000

resist ndiff,nnd 120000

resist m2contact/m1 1200

resist metal1 200

resist metal2,pad/m1 60

resist ppc/a,pdc/a 100000

resist nnc/a,ndc/a 100000

resist nwell,pwell 3000000

areacap poly 33

areacap metal1 17

areacap metal2,pad/m1 11

areacap ndiff,nsd 350

areacap pdiff,psd 200

areacap ndc/a,nsc/a 367

areacap pdc/a,psc/a 217

areacap pcontact/a 50

perimc allMetal1 space 56

perimc allMetal2 space 55

overlap metal1 pdiff,ndiff,psd,nsd 33

overlap metal2 pdiff,ndiff,psd,nsd 17 metal1

overlap metal1 poly 33

overlap metal2 poly 17 metal1

overlap metal2 metal1 33

sideoverlap allMetal1 space allDiff 64

sideoverlap allMetal2 space allDiff 60

sideoverlap allMetal1 space poly 64

sideoverlap allMetal2 space poly 60

sideoverlap allMetal2 space allMetal1 70

fet pfet pdiff,pdc/a 2 pfet Vdd! nwell 0 0

fet nfet ndiff,ndc/a 2 nfet GND! pwell 0 0

end

Table 19: Extract section.

–41–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

style stylename

All subsequent lines up to the next style line or the end of the section are interpreted as be-

longing to extraction style stylename. If there is no initial style line, the first style will be named

“default”.

The keywords areacap, perimcap, and resist define the capacitance to substrate and the sheet

resistivity of each of the Magic layers in a layout. All capacitances that appear in the extract sec-

tion are specified as an integral number of attofarads (per unit area or perimeter), and all resistances

as an integral number of milliohms per square.

The areacap keyword is followed by a list of types and a capacitance to substrate, as follows:

areacap types C

Each of the types listed in types has a capacitance to substrate of C attofarads per square

lambda. Each type can appear in at most one areacap line. If a type does not appear in any

areacap line, it is considered to have zero capacitance to substrate per unit area. Since most

analysis tools compute transistor gate capacitance directly from the area of the transistor’s gate,

Magic should produce node capacitances that do not include gate capacitances. To ensure this, all

transistors should have zero areacap values.

The perimcap keyword is followed by two type-lists and a capacitance to substrate, as follows:

perimcap intypes outtypes C

Each edge that has one of the types in intypes on its inside, and one of the types in outtypes

on its outside, has a capacitance to substrate of C attofarads per lambda. This can also be used

as an approximation of the effects due to the sidewalls of diffused areas. As for areacap, each

unique combination of an intype and an outtype may appear at most once in a perimcap line. Also

as for areacap, if a combination of intype and outtype does not appear in any perimcap line, its

perimeter capacitance per unit length is zero.

The resist keyword is followed by a type-list and a resistance as follows:

resist types R

The sheet resistivity of each of the types in types is R milliohms per square.

Each resist line in fact defines a “resistance class”. When the extractor outputs the area and

perimeter of nodes in the .ext file, it does so for each resistance class. Normally, each resistance

class consists of all types with the same resistance. However, if you wish to obtain the perimeter

and area of each type separately in the .ext file, you should make each into its own resistance class

by using a separate resist line for each type.

In addition to sheet resistivities, there are two other ways of specifying resistances. Neither

is used by the normal Magic extractor, but both are used by the resistance extractor. Contacts

have a resistance that is inversely proportional to the number of via holes in the contact, which is

proportional (albeit with quantization) to the area of the contact. The contact keyword allows the

resistance for a single via hole to be specified:

contact types size R

contact types size border separation R

–42–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

where types is a comma-separated list of types, size is in lambda, and R is in milliohms. Size

is interpreted as a hole-size quantum; the number of holes in a contact is equal to its width divided

by size times its length divided by size, with both quotients rounded down to the nearest integer.

The resistance of a contact is R divided by the number of holes.

Note that the size alone may not compute the same number of contact cuts as would be gener-

ated by the cifoutput command, since it has no understaning of border and separation, and therefore

may compute an incorrect contact resistance. To avoid this problem, the second form provides a

way to give values for border and separation, again in units of lambda. There is no automatic

check to guarantee that the extract and cifoutput sections agree on the number of contact cuts for a

given contact area.

Transistors also have resistance information associated with them. However, a transistor’s

resistance may vary depending on a number of variables, so a single parameter is generally insuffi-

cient to describe it. The fetresist line allows sheet resistivities to be given for a variety of different

configurations:

fetresist fettypes region R

where fettypes is a comma-separated list of transistor types (as defined in fet lines below),

region is a string used to distinguish between resistance values for a fet if more than one is provided

(the special region value of “linear” is required for the resistance extractor), and R is the on-

resistance of the transistor in ohms per square (not milliohms; there would otherwise be too many

zeroes).

Magic also extracts internodal coupling capacitances, as illustrated in Figure 12. The keywords

overlap, sidewall, sideoverlap, and sidehalo provide the parameters needed to do this.

Overlap capacitance is between pairs of tile types, and is described by the overlap keyword as

follows:

overlap toptypes bottomtypes cap [shieldtypes]

where toptypes, bottomtypes, and optionally shieldtypes are type-lists and cap is a capacitance

in attofarads per square lambda. The extractor searches for tiles whose types are in toptypes that

overlap tiles whose types are in bottomtypes, and that belong to different electrical nodes. (The

planes of toptypes and bottomtypes must be disjoint). When such an overlap is found, the capac-

itance to substrate of the node of the tile in toptypes is deducted for the area of the overlap, and

replaced by a capacitance to the node of the tile in bottomtypes.

If shieldtypes are specified, overlaps between toptypes and bottomtypes that also overlap a type

in shieldtypes are not counted. The types in shieldtypes must appear on a different plane (or planes)

than any of the types in toptypes or bottomtypes.

Parallel wire capacitance is between pairs of edges, and is described by the sidewall keyword:

sidewall intypes outtypes neartypes fartypes cap

where intypes, outtypes, neartypes, and fartypes are all type-lists, described in Figure 13. Cap

is half the capacitance in attofarads per lambda when the edges are 1 lambda apart. Parallel wire

coupling capacitance is computed as being inversely proportional to the distance between two

edges: at 2 lambda separation, it is equal to the value cap; at 4 lambda separation, it is half of

–43–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

(metal) (metal)

(poly)

sidewall overlap

sidewall

overlap (oxide)

Figure 12: Magic extracts three kinds of internodal coupling capacitance. This figure is a side view

of a set of masks that shows all three kinds of capacitance. Overlap capacitance is parallel-plate

capacitance between two different kinds of material when they overlap. Parallel wire capacitance

is fringing-field capacitance between the parallel vertical edges of two pieces of material. Sidewall

overlap capacitance is fringing-field capacitance between the vertical edge of one piece of material

and the horizontal surface of another piece of material that overlaps the vertical edge.

tfar

fartypes

neartypes

outtypes

intypes

tinside

Figure 13: Parallel wire capacitance is between pairs of edges. The capacitance applies between

the tiles tinside and tfar above, where tinside’s type is one of intypes, and tfar’s type is one of

fartypes.

cap. This approximation is not very good, in that it tends to overestimate the coupling capacitance

between wires that are farther apart.

To reduce the amount of searching done by Magic, there is a threshold distance beyond which

the effects of parallel wire coupling capacitance are ignored. This is set as follows:

sidehalo distance

where distance is the maximum distance between two edges at which Magic considers them to

have parallel wire coupling capacitance. If this number is not set explicitly in the technology

file, it defaults to 0, with the result that no parallel wire coupling capacitance is computed.

Sidewall overlap capacitance is between material on the inside of an edge and overlapping

material of a different type. It is described by the sideoverlap keyword:

sideoverlap intypes outtypes ovtypes cap

–44–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

where intypes, outtypes, and ovtypes are type-lists and cap is capacitance in attofarads per

lambda. This is the capacitance associated with an edge with a type in intypes on its inside and a

type in outtypes on its outside, that overlaps a tile whose type is in ovtypes. See Figure 12.

Devices are represented in Magic by explicit tile types. The extraction of a device id ster-

mined by the declared device type and the information about types which comprise the various

independent terminals of the device.

device mosfet model gate types sd types subs types subs node name \�

[perim cap [area cap]]

device capacitor model top types bottom types [perim cap] area cap

device resistor model resist types term types

device bjt model base types emitter types collector types

device diode model pos types neg types

device subcircuit model gate types [term types [subs types]]

device rsubcircuit model id types term types

Arguments are as follows:

• model The SPICE model name of the device. In the case of a subcircuit, it is the subcircuit

name. For resistor and capacitor devices for which a simple, unmodeled device type is

needed, the model can be the keyword None.

• gate types Layer types that form the gate region of a MOSFET transistor.

• sd types Layer types that form the source and drain regions of a MOSFET transistor. Cur-

rently there is no way to specify a device with asymmetric source and drain.

• subs types Layer types that form the bulk (well or substrate) region under the device. This

can be the keyword None for a device such as an nFET that has no identifiable substrate layer

type (“space” cannot be used as a layer type here).

• top types Layer types that form the top plate of a capacitor.

• bottom types Layer types that form the bottom plate of a capacitor.

• resist types Layer types that represent the primary characterized resistive portion of a resistor

device.

• term types Layer types that represent the ends of a resistor. Normally this is a contact type,

but in the case of silicide block or high-resistance implants, it may be normal salicided

polysilicon or diffusion.

• base types Layer types that represent the base region of a bipolar junction transistor.

• emitter types Layer types that represent the emitter region of a bipolar junction transistor.

• collector types Layer types that represent the collector region of a bipolar junction transistor.

• pos types Layer types that represent the positive (anode) terminal of a diode or P-N junction.

–45–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

• neg types Layer types that represent the negative (cathode) terminal of a diode or P-N junc-

tion.

• id types Identifier layers that identify a specific resistor type.

• subs node name The default name of a substrate node in cases where a 4-terminal MOSFET

device is missing an identifiable bulk terminal, or when the subs type is the keyword None.

• perim cap A value for perimeter capacitance in units of attoFarads per lambda

• area cap A value for area capacitance in units of attoFarads per lambda squared.

The subs node name can be a Tcl variable name (beginning with “$”) in the Tcl-based ver-

sion of magic. Thus, instead of hard-coding a global net name into the general-purpose, project-

independent technology file, the technology file can contain a default global power and ground

net variable, normally $VDD and $VSS. Each project should then set these variables (in the

.magicrc file, for example) to the correct value for the project’s default global power and ground

networks.

SPICE has two formats for resistors and capacitors: one uses a model, and the other does not.

The model implies a semiconductor resistor or capacitor, and takes a length and width value. The

resistivity or capacitance per unit area of the devices is assumed to be declared in the model, so

these values are not generated as part of the SPICE netlist output.

Magic technology file formats 27 and earlier only understood one device type, the FET tran-

sistor. The extraction of a fet (with gate, sources, and drains) from a collection of transistor tiles

is governed by the information in a fet line. This keyword and syntax is retained for backward

compatibility. This line has the following format:

fet types dtypes min-nterms name snode [stypes]gscap gccap

Types is a list of those tiletypes that make up this type of transistor. Normally, there will be

only one type in this list, since Magic usually represents each type of transistor with a different

tiletype.

Dtypes is a list of those tiletypes that connect to the diffusion terminals of the fet. Each transis-

tor of this type must have at least min-nterms distinct diffusion terminals; otherwise, the extractor

will generate an error message. For example, an efet in the scmos technology must have a source

and drain in addition to its gate; min-nterms for this type of fet is 2. The tiletypes connecting to

the gate of the fet are the same as those specified in the connect section as connecting to the fet

tiletype itself.

Name is a string used to identify this type of transistor to simulation programs.

The substrate terminal of a transistor is determined in one of two ways. If stypes (a comma-

separated list of tile types) is given, and a particular transistor overlaps one of those types, the

substrate terminal will be connected to the node of the overlapped material. Otherwise, the sub-

strate terminal will be connected to the node with the global name of snode (which must be a global

name, i.e., end in an exclamation point).

Gscap is the capacitance between the transistor’s gate and its diffusion terminals, in attofarads

per lambda. Finally, gccap is the capacitance between the gate and the channel, in attofarads per

square lambda. Currently, gscap and gccap are unused by the extractor.

–46–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

In technology format 27 files, devices such as resistors, capacitors, and bipolar junction tran-

sistors could be extracted by treating them like FETs, using a “fet” line in the extract file, and as-

signing the terminal classes (somewhat arbitrarily) to the FET terminal classes gate, source/drain,

and bulk. Resistors are rather cumbersome using this method, because the “gate” terminal maps

to nothing physical, and a dummy layer must be drawn. The “ext2spice” command generates an

“M” spice record for all devices declared with a fet line, so an output SPICE deck must be post-

processed to produce the correct SPICE devices for simulation. One important other difference

between the older form and the newer is the ability of the “device” records to handle devices with

bends or other irregular geometry, including annular (ring-shaped) FETs.

Often the units in the extracted circuit for a cell will always be multiples of certain basic units

larger than centimicrons for distance, attofarads for capacitance, or milliohms for resistance. To

allow larger units to be used in the .ext file for this technology, thereby reducing the file’s size, the

extract section may specify a scale for any of the three units, as follows:

cscale c

lambda l

rscale r

In the above, c is the number of attofarads per unit capacitance appearing in the .ext files, l is

the number of centimicrons per unit length, and r is the number of milliohms per unit resistance.

All three must be integers; r should divide evenly all the resistance-per-square values specified as

part of resist lines, and c should divide evenly all the capacitance-per-unit values.

Magic’s extractor breaks up large cells into chunks for hierarchical extraction, to avoid having

to process too much of a cell all at once and possibly run out of memory. The size of these chunks

is determined by the step keyword:

step step

This specifies that chunks of step units by step units will be processed during hierarchical

extraction. The default is 100 units. Be careful about changing step; if it is too small then the

overhead of hierarchical processing will increase, and if it is too large then more area will be

processed during hierarchical extraction than necessary. It should rarely be necessary to change

step unless the minimum feature size changes dramatically; if so, a value of about 50 times the

minimum feature size appears to work fairly well.

Magic has the capability to generate a geometry-only extraction of a network, useful for 3-D

simulations of electric fields necessary to rigorously determine inductance and capacitance. When

this feature is used, it is necessary for the field-equation solver to know the vertical stackup of the

layout. The extract section takes care of this by allowing each magic layer to be given a definition

of height and thickness of the fabricated layer type:

height layers height thickness

where layers is a comma-separated list of magic layers sharing the same height and thickness,

and height and thickness are floating-point numbers giving the height of the bottom of the layer

above the substrate, and the thickness of the layer, respectively, in units of lambda.

–47–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

18 Wiring section

The wiring section provides information used by the :wire switch command to generate contacts.

See Table 20 for the wiring section from the scmos technology file. Each line in the section has

the syntax

contact type minSize layer1 surround1 layer2 surround2

Type is the name of a contact layer, and layer1 and layer2 are the two wiring layers that it

connects. MinSize is the minimum size of contacts of this type. If Surround1 is non-zero, then

additional material of type layer1 will be painted for surround1 units around contacts of type. If

surround2 is non-zero, it indicates an overlap distance for layer2.

wiring

contact pdcontact 4 metal1 0 pdiff 0

contact ndcontact 4 metal1 0 ndiff 0

contact pcontact 4 metal1 0 poly 0

contact m2contact 4 metal1 0 metal2 0

end

Table 20: Wiring section

During :wire switch commands, Magic scans the wiring information to find a contact whose

layer1 and layer2 correspond to the previous and desired new wiring materials (or vice versa). If a

match is found, a contact is generated according to type, minSize, surround1, and surround2.

19 Router section

The router section of a technology file provides information used to guide the automatic routing

tools. The section contains four lines. See Table 21 for an example router section.

router

layer1 metal1 3 allMetal1 3

layer2 metal2 3 allMetal2 4 allPoly,allDiff 1

contacts m2contact 4

gridspacing 8

end

Table 21: Router section

The first two lines have the keywords layer1 and layer2 and the following format:

layer1 wireType wireWidth type-list distance type-list distance . . .

–48–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

They define the two layers used for routing. After the layer1 or layer2 keyword are two fields

giving the name of the material to be used for routing that layer and the width to use for its wires.

The remaining fields are used by Magic to avoid routing over existing material in the channels.

Each pair of fields contains a list of types and a distance. The distance indicates how far away the

given types must be from routing on that layer. Layer1 and layer2 are not symmetrical: wherever

possible, Magic will try to route on layer1 in preference to layer2. Thus, in a single-metal process,

metal should always be used for layer1.

The third line provides information about contacts. It has the format

contacts contactType size [surround1 surround2]

The tile type contactType will be used to make contacts between layer1 and layer2. Contacts

will be size units square. In order to avoid placing contacts too close to hand-routed material, Magic

assumes that both the layer1 and layer2 rules will apply to contacts. If surround1 and surround2

are present, they specify overlap distances around contacts for layer1 and layer2: additional layer1

material will be painted for surround1 units around each contact, and additional layer2 material

will be painted for surround2 units around contacts.

The last line of the routing section indicates the size of the grid on which to route. It has the

format

gridspacing distance

The distance must be chosen large enough that contacts and/or wires on adjacent grid lines will

not generate any design rule violations.

20 Plowing section

The plowing section of a technology file identifies those types of tiles whose sizes and shapes

should not be changed as a result of plowing. Typically, these types will be transistors and buried

contacts. The section currently contains three kinds of lines:

fixed types

covered types

drag types

where types is a type-list. Table 22 gives this section for the scmos technology file.

plowing

fixed pfet,nfet,glass,pad

covered pfet,nfet

drag pfet,nfet

end

Table 22: Plowing section

–49–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

In a fixed line, each of types is considered to be fixed-size; regions consisting of tiles of these

types are not deformed by plowing. Contact types are always considered to be fixed-size, so need

not be included in types.

In a covered line, each of types will remain “covered” by plowing. If a face of a covered type

is covered with a given type before plowing, it will remain so afterwards. For example, if a face

of a transistor is covered by diffusion, the diffusion won’t be allowed to slide along the transistor

and expose the channel to empty space. Usually, you should make all fixed-width types covered as

well, except for contacts.

In a drag line, whenever material of a type in types moves, it will drag with it any minimum-

width material on its trailing side. This can be used, for example, to insure that when a transistor

moves, the poly-overlap forming its gate gets dragged along in its entirety, instead of becoming

elongated.

21 Plot section

The plot section of the technology file contains information used by Magic to generate hardcopy

plots of layouts. Plots can be generated in different styles, which correspond to different printing

mechanisms. For each style of printing, there is a separate subsection within the plot section. Each

subsection is preceded by a line of the form

style styleName

Magic version 6.5 and earlier supported gremlin, versatec, and colorversatec styles. As these

are thoroughly obsolete, versions 7 and above instead implement two formats postscript and pnm.

Generally, the pnm format is best for printouts of entire chips, and the postscript format is best

for small cells. The PostScript output includes labels, whereas the PNM output does not. The

PostScript output is vector-drawn with stipple fills, whereas the PNM output is pixel-drawn, with

antialiasing. Small areas of layout tend to look artificially pixellated in the PNM format, while

large areas look almost photographic. The PostScript output is a perfect rendering of the Magic

layout, but the files become very large and take long spans of time to render for large areas of

layout.

The postscript style requires three separate sections. The first section defines the stipple pat-

terns used:

index pattern-bytes. . .

The index values are arbitrary but must be a positive integer and must be unique to each line.

The indices will be referenced in the third section. The pattern-bytes are always exactly 8 sets

of 8-digit hexidecimal numbers (4 bytes) representing a total of 16 bits by 16 lines of pattern

data. If a solid color is intended, then it is necessary to declare a stipple pattern of all ones. The

actual PostScript output will implement a solid color, not a stipple pattern, for considerably faster

rendering.

The second section defines the colors used in standard printer CMYK notation (Cyan, Magenta,

Yellow, blacK):

index C M Y K

–50–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

plot
style postscript

5 FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF . . .
7 18181818 30303030 60606060 C0C0C0C0 . . .
9 18181818 3C3C3C3C 3C3C3C3C 18181818 . . .
10 F0F0F0F0 60606060 06060606 0F0F0F0F . . .
13 00000000 00000000 33333333 33333333 . . .

1 47 95 111 0
9 223 47 223 0
10 0 255 255 0
12 191 127 0 0
13 95 223 63 0
14 0 0 0 255
16 111 151 244 0
17 23 175 183 0

pc,ndc,pdc,psc,nsc 14 X
m2c 14 B
m2c 14 13
m2,m2c 13 10
pdc,ndc,psc,nsc,pc,m1,m2c 12 9
poly,pc 10 5
nfet 9 7
nfet 16 5
pfet 1 7
pfet 17 5
pdiff,pdc 1 5
ndiff,ndc 9 5

style pnm
draw metal1
draw metal2
draw polysilicon
draw ndiffusion
draw pdiffusion
draw ntransistor
draw ptransistor
map psubstratepdiff pdiffusion
map nsubstratendiff ndiffusion
map polycontact polysilicon metal1
map m2contact metal1 metal2
map ndcontact ndiffusion metal1
map pdcontact pdiffusion metal1

end

Table 23: Sample plot section (for an SCMOS process). PostScript stipple patterns have been
truncated due to space limitations.

–51–

February 13, 2006 Magic Maintainer’s Manual #2: The Technology File

Like the first section, each index must be a unique positive integer, and the color values each

range from 0 to 255.

The third section assigns colors and stipple patterns to each style:

type-list color-index stipple-index|X|B

The type-list is a comma-separated list of magic layer types that collectively use the same color

and style. The color-index refers to one of the colors defined in the second section, and the stipple-

index refers to one of the stipple patterns defined in the first section. In addition to the stipple

pattern indices, two characters are recognized: B declares that a border will be drawn around the

layer boundary, and X declares that the layout boundary will be printed over with a cross in the

same manner as contact areas are drawn in the Magic layout.

To get a proper PostScript plot, it is necessary to have a properly defined plot postscript section

in the technology file. Without such a defined set, the plot postscript command will generate blank

output.

The pnm style declarations are as follows:

draw magic-type

map magic-type draw-type. . .

where both magic-type and draw-type represent a magic layer name. The draw command

states that a specific magic type will be output exactly as drawn on the layout. The map statement

declares that a specific magic type will be drawn as being composed of other layers declared

as draw types. The colors of the draw types will be blended to generate the mapped layer color.

Colors are defined by the style set used for layout and defined in the styles section of the technology

file. Stipple patterns, borders, and cross-hatches used by those styles are ignored. When multiple

styles are used for a layer type, the PNM output blends the base color of each of those styles. Thus,

contact areas by default tend to show up completely black, as the “X” pattern is usually defined

as black, and black blended with other colors remains black. This is why the above example re-

defines all of the contact types as mapped type blends. Contact cuts are not represented, which is

generally desired if the plot being made represents a large area of layout.

Unlike the PostScript section, the PNM plot section does not have to be declared. Magic will

set up a default style for PNM plots that matches (more or less) the colors of the layout as specified

by the styles section of the technology file. The plot pnm section can be used to tweak this

default setup. Normally this is not necessary. The default setup is helpful in that it allows the plot

pnm command to be used with all technology files, including those written before the plot pnm

command option was implemented.

22 Conditionals, File Inclusions, and Macro Definitions

The “raw” technology files in the scmos subdirectory of the Magic distribution were written for

a C preprocessor and cannot be read directly by Magic. The C preprocessor must first be used

to eliminate comments and expand macros in a technology file before it gets installed, which is

done during the “make install” step when compiling and installing Magic from source. Macro

definitions can be made with the preprocessor #define statement, and “conditional compilation”

–52–

Magic Maintainer’s Manual #2: The Technology File February 13, 2006

can be specified using #ifdef. Also, the technology file can be split into parts using the #include

statement to read in different parts of the files. However, this has for the most part proven to be

a poor method for maintaining technology files. End-users often end up making modifications to

the technology files for one purpose or another. They should not need to be making changes to

the source code distribution, they often do not have write access to the source distribution, and

furthermore, the elimination of comments and macros from the file makes the actual technology

file used difficult to read and understand.

Technology file formats more recent that 27 include several built-in mechanisms that take the

place of preprocessor statements, and allow the technology file source to be directly edited without

the need to re-process. This includes the include statement, which may be used anywhere in the

technology file, the alias statement in the types section, and the variant statement, which may

be used in the cifoutput, cifinput, or extract sections. The alias statements appear in the types

section, covered above. The include statement may appear anywhere in the file, and takes the form

include filename

Assuming that the included files exist in the search path Magic uses for finding system files (see

command path sys), then no absolute path needs to be speficied for filename. Note that the file

contents will be included verbatim; section names and end statements that appear in the included

file should not exist in the file that includes it, and vice versa.

The most common use of “#ifdef” preprocessor statements in the default “scmos” technology

is to selectively define different cifoutput, cifinput, and extract files for process variants. The result

is that these sections become quite large and repeat many definitions that are common to all process

variations. Technology file format 30 defines the variants option to the style statement for all three

sections cifinput, cifoutput, and extract. This statment option takes the form:

style stylename variants variantname,. . .

where stylename is a base name used for all variants, and one of the comma-separated list of

variantnames is a suffix appended to the stylename to get the actual name as it would be used in,

for example, a cif ostyle command. For example, the statement

style scmos0.18 variants (p),(c),(pc),()

defines four similar styles named scmos0.18(p), scmos0.18(c), scmos0.18(pc), and scmos0.18().

All of the variants are assumed to be minor variations on the base style. Within each style descrip-

tion, statements may apply to a single variant, a group of variants, or all variants. After the style

statement has been processed, all following lines are assumed to refer to all variants of the base

style until a variant statment is encountered. This statment takes the form:

variant variantname,. . .

to refer to one or more variants in a comma-separated list. All lines following the variant

statment will apply only to the specific process variants in the list, until another variant statement

is encountered. The special character “*” can be used as a shorthand notation for specifying all

process variants:

variant *

–53–

