
TimberWolf-6.1

Mixed Macro / Standard Cell Floorplanning,
Placement and Routing Package

(Building Block, Gate Array, and Standard Cell Circuits)

Yale University

May 1, 1992

Table of Contents
1. Introduction .. 2
2. Features ... 2
3. Using This Manual .. 3
4. Compilation of TimberWolf .. 4
5. TimberWolf Input Files .. 6

5.1. The Format of the CircuitName.par File ... 6
5.1.1. Genrows parameters ... 9
5.1.2. MINC - Mincut parameters ... 9
5.1.3. MICK - Mickey parameters ... 9
5.1.4. PART - Tomus parameters.. 9
5.1.5. SGGR - Sea-of-gates global router parameters... 10
5.1.6. TWMC - TimberWolfMC parameters.. 11
5.1.7. TWSC - TimberWolfSC parameters.. 14

5.2. The Format of the circuitName.cel File .. 19
5.2.1. Standard Cell / Gate Array Cell Definition ... 19
5.2.2. Hard Macro Cell Definition... 29
5.2.3. Soft Macro Cell Format ... 34
5.2.4. Pad Description Format .. 38

5.3. The Format of the CircuitName.net File ... 42
6. TimberWolf Output Files .. 43

6.1. Message Files.. 43
6.2. Placement Output Files ... 43
6.3. Global Routing Output Files.. 44

7. Executing TimberWolf.. 47
8. Tutorial #1 - Macro Cell Design... 48
9. Tutorial #2 - Standard Cell Design .. 51
10. Tutorial #3 - Mixed Macro/Standard Cell Design.. 56
11. Tutorial #4 - N-way Circuit Partitioning using Tomus.. 61
12. Genrows - Row Generation Program.. 66

12.1. Function... 66
12.2. Input.. 67
12.3. Output ... 68
12.4. Graphical Interface.. 70

13. Mickey .. 75
13.1. Function... 75
13.2. Input.. 75
13.3. Output ... 75
13.2. Graphical Interface.. 75

14. Mincut - Standard cell clustering... 76
14.1. Function... 76
14.2. Input.. 77
14.3. Output ... 77
14.4. Graphical Interface.. 77

15 PSC.. 78
15.1. Function... 78
15.2. Input.. 78
15.3. Output ... 78
15.4. Graphical Interface.. 78

16. SGGR. .. 80
16.1. Function... 80
16.2. Input.. 80
16.3. Output ... 80
16.4. Graphical Interface.. 80

17. Syntax. .. 81
17.1. Function... 81
17.2. Input.. 81
17.3. Output ... 81
17.4. Graphical Interface.. 81

18. TimberWolf (twflow) - The Master Control .. 82
18.1. Function... 82
18.2. Input.. 83
18.3. Output ... 85
18.4. Graphical Interface.. 85

19. TimberWolfMC... 87
19.1. Function... 87
19.2. Input.. 88
19.3. Output ... 88
19.4. Graphical Interface.. 88

20. TimberWolfSC - Standard cell placement and global routing .. 91
20.1. Function... 91
20.2. Input.. 91
20.3. Output ... 91
20.4. Graphical Interface.. 91

21. Tomus... 93
21.1. Function... 93
21.2. Input.. 93
21.3. Output ... 93
21.4. Graphical Interface.. 94

22. References .. 96
23. Appendix A - Syntax for the CircuitName.cel file .. 97

23.1. BNF for circuitName.cel file... 97
23.2. Reserved keywords for circuitName.cel file .. 103

TimberWolf-6.1

Mixed Macro / Standard Cell Floorplanning,
Placement and Routing Package

(Building Block, Gate Array, and Standard Cell Circuits)

2

1 . INTRODUCTION

TimberWolf [SecS84][SecS85][Sec88b] is a complete timing driven placement and global routing

package applicable to row based and building block design styles. TimberWolf is capable of handling any of

the row-based design styles, namely, standard cell circuits, gate arrays and sea-of-gates circuits. In

addition, TimberWolf is applicable to circuits containing building blocks or macro cells of any rectilinear

shape. Furthermore, the cells may have fixed geometry including pin locations (hard macro cells) or the

cells may have an estimated area with a specified aspect-ratio range, and with pins that need to be placed

(soft macro cells). TimberWolf is also applicable to floorplanning problems and may be used to completely

place and global route mixed macro/standard cell circuits.

2 . FEATURES

Standard cell, macro cell, and mixed macro/standard cell design styles.
Macro cells of any rectilinear shape.
Hard and soft macro cells.
Gate array designs.
X11 (X11R2 - X11R6 inclusive) graphics interface.
Based on new simulated annealing algorithm.
Signal path-based timing driven.
Upper and lower bounds on path lengths.
Wire length calculations are based on actual pin locations.
Flexible pad placement algorithm.
Ability to generate placements close to that obtained from a previous run.
Logical pin swapping and/or gate swapping.
CPU time control via fast/slow option.
Sea-of-gates global router.
N-way timing driven circuit partitioning.
Automatic design flow control.

3

3 . Using This Manual

The following conventions are used throughout this guide:

Boldface Boldface letters used in the command or pathname examples indicate keywords

that must be used literally.

Italic Italic letters used in the command or pathname examples indicate user- or

system-supplied data.

Underline Underlined text indicates default parameter or setting.

[] Square brackets enclose optional user-supplied data.

< > Angle brackets enclose specific keyboard key names.

{ } Curly brackets enclose a set of user choices.

The term working directory will refer to the directory of the file system to which the user is currently

attached.

4

4 . COMPILATION OF TIMBERWOLF

The distribution tape includes all the files necessary to compile TimberWolf version 6.1. TimberWolf

is a collection of programs written in C. The programs should port directly to any machine supporting the

C language under the UNIX operating system. Supplemental instructions for the compilation are in the file

README included in the top level directory. In order to compile and link the program, the UNIX make

command is utilized. Since it is a rather involved process to compile and link these modules into an

executable, it is recommended to use the UNIX makefile which is supplied. We will outline the necessary

steps here. First, set the working directory to be the TimberWolf root directory. Next, type make in this

directory. This should echo the directions we are about to present. The user must first set the TimberWolf

environment variables TWDIR and DATADIR. TWDIR is the pathname of the TimberWolf directory

and DATADIR is the pathname of the directory where graphics dumps are stored. TWDIR and

DATADIR can be set to their default settings by typing 'source .twrc <CR>'. This script will also

include the TimberWolf bin directory in the search path.

In order to make the build process as flexible as possible, the makefiles have been split into two

pieces, the machine independent part or Ymakefile and the machine dependent part or Ymake.macro file. To

compile on different machines, one only needs to set the compile switches found in the Ymake.macro file

located in the ./pgms/ymake directory. For your convenience, various Ymake.macro files have been

included for frequently used configurations. Either edit the Ymake.macro file or copy one of the supplied

macro files to Ymake.macro.

Several compilation switches in the Ymake.macro file require further explanation. The conditional

compile switch CLEANUP=-DCLEANUP_C should normally be defined when running under the UNIX

operating system. If for any reason you do not wish to enable the cleanup handler, you may comment out

the CLEANUP definition in the Ymake.macro file. If you wish to install your own cleanup handler

instead, see cleanup.h under ./pgms/Ylib/include and cleanup.c under ./pgms/Ylib/lib for more

details. If you wish to compile a version of TimberWolf without X11 graphics, the NOGRAPHICS

conditional compile is provided. We DO NOT recommend this unless X11 is not supported on your

computer. Most workstations support X11, and so the desired method of turning off the graphics is

through the use of the -n runtime command argument. The macro definitions XLIB and LINKLIB have

been furnished to handle cases where the X11 include files and link library have been moved from their

standard places: /usr/include/X11 and /usr/lib respectively. The conditional compile SYS5 is useful

for compilation on system 5 machines. The DEBUG option normally includes useful debug code into the

final executable. If a faster and smaller executable is desired, the DEBUG switch may be commented out.

Another compilation switch NO_FEED_INSTANCES pertains to the feed-through cell naming convention.

By default, feed-through cells are given distinct instance names. If you define NO_FEED_INSTANCES

then each feed will be assigned the same name.

After setting the compilation switches in Ymake.macro, return to the TimberWolf root directory and

reset the top level makefile by entering 'ymake'. We are now ready to reset the makefiles for the rest of

the system. This is accomplished by typing 'make Makefiles' on the command line. At this point, we

are ready to build the system by entering 'make install_non_yale'. When the compilation process

completes, you will be ready to use TimberWolf.

In designing the TimberWolf system, great pains were made to make the system flexible, portable,

and maintainable. Where possible, code is reused through the use of a common library found in

./pgms/Ylib/lib. All graphics calls to X reside in this library. In addition, most system calls are called

5

from library functions. In this way, if any problems arise in the compilation process it will tend to be

localized in library routines. All character array sizes can be set with the definition LRECL which can be

found in ./pgms/Ylib/include/base.h. In addition, the definitions of int, double, and float may all be

redefined in this file to accommodate non-32 bit machine architectures.

Note: Never move the TimberWolf tree with a command that does not perserve soft links such as "cp

-r". The TimberWolf system will not function if its soft links are destroyed.

6

5 . TIMBERWOLF INPUT FILES

TimberWolf can be executed by issuing the command TimberWolf circuitName, where circuitName

is a command line argument specifying the name of the circuit for which the program is to perform

placement, global routing, etc. TimberWolf requires the presence of two input files in the working

directory: circuitName.par, and circuitName.cel. The circuitName.net file is optional. In addition, the

TWDIR and DATADIR environment variables need to be set to their proper values. Again this can be

accomplished by typing 'source .twrc <CR>' in the TimberWolf root directory.

5 . 1 . THE FORMAT OF THE CIRCUITNAME.PAR FILE

The file circuitName.par contains parameter specifications for TimberWolf system. The TimberWolf

system is a collection of interacting programs. Instead of having parameter files for each of the individual

programs, all TimberWolf programs are controlled through the use of a single parameter file. The

parameter file consists of two parts: the design rule parameters and program control parameters.

Comments are similar to those found in the csh; they are entered by placing a # in the first column of a

line. The format for design rule parameters is as follows:

RULES
layer layername resistance capacitance { vertical | horizontal }
via vianame layername layername [float]
width {layername | vianame} float
spacing {layername | vianame} {layername | vianame} float
overhang {layername | vianame} {layername | vianame} float
 .
 .
 .

ENDRULES

The mandatory keywords RULES and ENDRULES delimit the set of design rules. The keyword

layer defines a layer whose name is given by layername. Each layer has associated with it a parasitic

resistance and capacitance given in ohms per square and farads per square micron respectively. Concluding

the layer definition is the preferred routing direction to be associated with the layer. The preferred direction

is used for routing estimation only, the actual routing for a given layer may occur in either direction. At

least one layer must be specified in the horizontal direction and at least one must be specified in the vertical

direction. Any number of layers may defined. Layer definitions must precede all other rules.

The connections between layers are defined using the keyword via followed by the name given to the

via cell and the two layers which are to be connected. The via name can then be used in subsequent width

and spacing rules. The optional floating point number specifies the aspect ratio limit of the via if

rectangular vias are allowed. The detail router will optimize the via dimensions (and orientation) for the

given rules while maintaining constant via area. The area is determined from the specified width of the via.

The default aspect ratio limit is 1.0.

The keyword width allows the definition of a given layer's minimum routing width or via width in

microns. Similarly, the spacing keyword begins the definition of the minimum distance between any

defined layers or vias.

The keyword overhang specifies that a layer or via must overlap another layer or via by the amount

specified by the floating point number.

7

The second part of the parameter file is devoted to program control parameters. The format for this

file is similar to the .Xdefaults format:

programName*parameter : parameterValue

where programName may be one of the following:

GENR - Genrows - standard cell row configuration program

MICK - Mickey global router

MINC - Mincut clustering program

PART - Tomus program (n-way partitioner)

SGGR - SGGR (sea-of-gates global router)

TWMC - TimberWolfMC - macro cell placement program

TWSC - TimberWolfSC - row based placement, and global routing program

The first time TimberWolf is executed on a design, the TimberWolf system automatically copies a

default template for the parameter file from the ./TimberWolf/defaults directory into the current design

directory. The file copied will be xxx.par when row-based cells are present and xxx.macro.par when

only macros are present in the design. Next, the user will be asked to edit the file using vi, or the editor

specified in the EDITOR cshell environment variable. The user should edit the default values to their

appropriate values. Any parameters which are common to all designs should be entered as defaults in the

parameter template files. Figure 5.1.1 shows the default xxx.par template file. Note that wildcarding is

permitted by preceding the parameter with an asterisk. Each parameter will be discussed in turn below.

8

Sample xxx.par template file
This is a default parameter file for the TimberWolf system.
Please change the variables below to their appropriate values.
#

RULES

layer metal 0.05 0.1E-15 vertical
layer poly 20.0 0.1E-15 horizontal
layer metal2 0.05 0.1E-15 vertical
via contact metal poly
via via metal metal2
width metal 4.0
spacing metal metal 3.0
width poly 4.0
spacing poly poly 3.0

spacing metal poly 0.0
width contact 2.50
width via 3.0
this means stacked vias - a nonzero number would disallow stacked vias
spacing contact via 0

this means metal must overlap the contact
overhang metal contact 1.0

ENDRULES

General parameters controlling the TimberWolf system.
*vertical_wire_weight : 1.0
*vertical_path_weight : 1.0
*rowSep : 1.0
*padspacing : abut

Parameters controlling TimberWolfMC.
#TWMC*slow : 2

Parameters controlling TimberWolfSC.
TWSC*feedThruWidth : 2 layer 1
TWSC*do.global.route : on

Parameters controlling genrows configuration program.
GENR*feed_percentage : 30.0
GENR*row_to_tile_spacing: 1

Figure 5.1.1

9

5.1.1. Genrows parameters
feed_percentage float
graphics.wait { on | off }
minimum_row_len integer

numrows integer
rowSep float
row_to_tile_spacing integer

The keyword feed_percentage is followed by a floating point number which specifies the amount

of space to be reserved for feedthrough cells. The amount of cell width reserved will be feed_percentage

multiplied by the total width of the row-based cells. TimberWolfSC reports the feed percentage of the

current execution at the bottom of the circuitName.out file if global routing has been requested.

The graphics.wait keyword allows the user to control whether Genrows will enter a wait state after

configuring the rows. The default is to wait for the user to enter commands.

Genrows breaks the core area into tiles. The keyword minimum_row_len sets a limit on the size

of a valid tile, that is, any tile whose width is smaller than the minimum_row_len will not have rows.

In the case of designs consisting only of row-based cells, the number of cell rows may be set to the

value following the keyword numrows. This parameter has precedence over the rowSep parameter in

calculating the spacing between standard cell rows.

The required keyword rowSep is followed by a floating point number representing the desired amount

of separation between rows. The amount of separation between rows is this number times the average

height of the rows. This is, if you want the row separation equal to the average row height, then this

number should be 1.0. On the other hand, if you want the row separation to be twice the height of the

rows, then this number should be 2.0. Normally, a value of 1.0 is appropriate.

The optional keyword row_to_tile_spacing allows the user to modify the distance between the

edge of tile and the beginning and end of a row.

5.1.2. MINC - Mincut parameters
max_macro integer

numcell_in_macro integer

The optional keyword max_macro controls the target number of partitions and the optional keyword

numcell_in_macro controls the maximum number of standard cells to be placed in any standard cell

cluster. WARNING: these parameters should not be changed from their default values.

5.1.3. MICK - Mickey parameters
There are no user programmable parameters for the Mickey global router at this time.

5.1.4. PART - Tomus parameters
fast integer
random.seed integer
rowSep float
slow integer
vertical_path_weight float
vertical_wire_weight float

There are no required parameters for controlling the quality of the solution and the CPU time used by

Tomus. That is, by default Tomus is set up to yield what we feel approximates the best attainable

solutions. However, experienced Tomus users may wish to experiment with the optional parameters for

10

controlling the trade-off between CPU time and solution quality. The keywords fast and slow represent

the set of optional parameters.

The keyword fast is an optional entry in the file circuitName.par. The inclusion of this keyword will

cause Tomus to be executed about n times faster, where n is the value of the integer following the keyword

fast. The quality of the placement will tend to decrease as n is made larger than one (the smaller the value of

n, the better the result). For design space exploration, a value of n in the range of five to ten is

recommended.

The keyword slow is an optional entry causing Tomus to be executed about n times longer than the

default. The value of n is specified by the integer following the keyword slow. In some cases, you may

get a slightly better result. However, only use the slow option if CPU time is of no interest to you.

The keyword random.seed is useful when the output data files have been deleted and the data needs

to be regenerated. The random number generator seed is printed in the circuitName.pout file. If the

circuitName.cel and circuitName.par files are identical, a second run using the same random.seed value

will yield the exact same output.

The required keyword rowSep is followed by a floating point number representing the desired amount

of separation between rows. The amount of separation between rows is this number times the average

height of the rows. This is, if you want the row separation equal to the average row height, then this

number should be 1.0. On the other hand, if you want the row separation to be twice the height of the

rows, then this number should be 2.0. Normally, a value of 1.0 is appropriate.

The keyword vertical_path_weight is required. The floating point number represents the cost for

one unit of vertical path length, given that the cost for one unit of horizontal path length is unity. This

features allows the user to specify that the capacitance (or, in some sense, the delay) per unit length is

different for the vertical routing layer as opposed to the horizontal routing layer. Tomus will seek to ensure

that for each path specified in the circuitName.net file, the horizontal path length plus vertical_path_weight

times the vertical path length is above the lower bound and below the upper bound for that path.

5.1.5. SGGR - Sea-of-gates global router parameters
global_routing_iterations integer
min_peak_density { on | off }
min_total_density { on | off }
TWSC*SGGR { on | off }

If the TimberWolfSC keyword SGGR occurs in the parameter file, the sea-of-gates global router will

be executed automatically after the completion of TimberWolfSC if the do.global.route keyword is

present in the circuitName.par file. SGGR was developed specifically for multiple-metal-layer sea-of-gates

circuits and subsequently extended to handle gate arrays and standard cell circuits. If the number of implicit

feed through cells (or, implicit feeds) is not enough, SGGR will terminate with a message indicating that

this may be the problem. If you get this message, you may restart TimberWolfSC (using the restart

mechanism) and request the default global router. You may also leave out the SGGR keyword when you run

TimberWolfSC to see how many tracks would be used by the default global router. Then, copy the

circuitName.sav file to the circuitName.res file and rerun TimberWolf, specifying SGGR, so that it creates

the input files for SGGR. Then, by executing SGGR, you can see how many fewer tracks are needed. In

general, the more implicit feeds (or free vertical routing tracks over the rows), the greater the improvement

yielded by SGGR over the default global router. Note that SGGR is a TimberWolfSC keyword.

11

By default, SGGR seeks to minimize the total channel density for standard cell circuits and seeks to

minimize the peak (or maximum) channel density for gate array circuits. The user may override these

defaults by specifying the keyword min_peak_density or the keyword min_total_density in the .par

file. As you would expect, SGGR does a better job of minimizing the maximum channel density (possibly

at the expense of higher total channel density) if min_peak_density is specified, or if the circuit is a

gate array and no override is given. Conversely, the total number of tracks will usually be lower (possibly

at the expense of a higher peak density) if min_total_density is specified, or if the circuit is a standard

cell circuit and no override is specified.

The keyword global_routing_iterations followed by an integer modifies the number of global

routing iterations that SGGR will perform. The default is three global routing iterations.

5.1.6. TWMC - TimberWolfMC parameters

User data parameters:
chip.aspect.ratio float
core [initially] integer integer integer integer
default.tracks.per.channel integer
gridOffsetX integer
gridOffsetY integer
gridX integer
gridY integer
minimum_pad_space integer
origin integer integer
vertical_path_weight float
vertical_wire_weight float

Program control:
cost_only { on | off }
contiguous_pad_groups { on | off }
do.channel.graph { on | off }
do.compaction integer
do.global.route { on | off }
fast integer
graphics.wait { on | off }
no.graphics { on | off }
no.graphics.update { on | off }
padspacing { uniform | abut | variable | exact }
print_pins { on | off }
random.seed integer
restart { on | off }
s low integer

The keyword chip.aspect.ratio is followed by a floating point number which specifies the desired

aspect ratio for the chip. TimberWolfMC uses this parameter to compute the dimensions of the core area.

The cell placement is influenced in such a manner as to yield an aspect ratio close to the specified value.

The optional keyword core allows the user to specify the exact positions of the chip core area. The

four integers following the core keyword specifying the dimensions are left side, bottom side, right side,

and top side of the chip, respectively. If fixed cells are present in the circuitName.cel file, the chip core

dimensions should be specified so that a frame of reference is available for determining the fixed cells

positions. If the keyword initially is specified, TimberWolfMC will determine the core area after

12

considering the fixed cells; otherwise, TimberWolfMC is constrained to place the cells in the given core

area. Unless the user is certain of the routing area of all of the cells, the keyword initially should be

specified.

The optional keyword default.tracks.per.channel tells the compaction program and global router

to allocate an additional number of tracks (above density) in each channel. The space allocated is the given

number of tracks multiplied by the track pitch calculated for that direction value.

Four optional parameters are available for fixing the lower left hand corner of a cell to a grid or lattice,

often useful for PCB applications. The parameters gridX and gridY define the grid to grid spacing in the

horizontal and vertical directions, respectively, and the parameters gridOffsetX and gridOffsetY allow

the grid to be shifted from the origin. All four must be specified simultaneously.

The optional keyword minimum_pad_space allows the user to specify a minimum space between

the I/O pads.

The optional keyword origin allows the user to specify the origin of the core region. The two

integers following the origin keyword specify the lower left corner of the core area.

The keyword vertical_path_weight is required. The floating point number represents the cost for

one unit of vertical path length, given that the cost for one unit of horizontal path length is unity. This

features allows the user to specify that the capacitance (or, in some sense, the delay) per unit length is

different for the vertical routing layer as opposed to the horizontal routing layer. TimberWolfMC will seek

to ensure that for each path specified in the circuitName.net file, the horizontal path length plus

vertical_path_weight times the vertical path length is above the lower bound and below the upper bound for

that path.

The keyword cost_only is an optional entry in the circuitName.par file allowing bypass of the

simulated annealing placement algorithm. Its presence will result in TimberWolfMC reading the input file,

generating an initial placement from the coordinates given in the input data, computing the initial cost,

generating output files, and then terminating.

By default, members of pad groups are placed contiguously. In other words, no nonmember pads can

be placed between the member pads. To change the setting to noncontiguous, the parameter value off must

follow the keyword contiguous_pad_groups. In this case, nonmember pads could be placed between

the pads.

If the optional keyword do.channel.graph is present the program will generate a channel graph for

a given placement.

The keyword do.global.route causes TimberWolfMC to perform a global routing step using the

channel graph generated; hence the do.channel.graph keyword must be present when requesting global

routing.

If do.compaction is present in the circuitName.par file, the program will iterate the following flow

the given number (specified by the integer) of times: compaction, channel generation, global routing. This

is the placement modification phase. After each iteration, the space required for routing is accounted for by

the compactor, and in the next cycle the program attempts to minimize the chip area using the current

knowledge of the routing. Usually three iterations are sufficient for the placement to converge. If

compaction is desired, the do.channel.graph and do.global.route keywords must be present.

By default, TimberWolfMC performs the simulated annealing placement algorithm. The user may

control the run time of the simulated annealing algorithm. The keyword fast followed by an integer

number shortens the running time of the simulated annealing algorithm by the specified integer factor

13

(possibly at the expense of placement quality). To increase the placement quality (at the expense of running

time) use the keyword slow followed by an integer multiplying factor. Usually the default amount is

sufficient but it is recommended that the fast option be used on initial runs. The placement is normally

the output of the simulated annealing algorithm; however, the user may specify a placement by fixing all

the cells in the circuitName.cel file and using the keyword cost_only to avoid TimberWolfMC's

placement algorithm.

The graphics system has three control keywords: no.graphics which allows the program compiled

with the X11 library to run without displaying graphics, graphics.wait which tells TimberWolfMC to

wait for the user to enter commands after each step in the process, and no.graphics.update which does

not update the graphics until the end of the simulated annealing run. To continue execution from a graphics

wait loop, the user clicks on the FILE menu and selects CONTINUE PGM. See the section on graphics

for more details concerning the graphics capabilities and commands.

padspacing abut

padspacing uniform

padspacing variable

The three pad spacing modes

The optional keyword padspacing controls the pad

spacing mode. The are four modes of operation: uniform

pad spacing, abutting pad spacing, variable pad spacing,

and exact pad spacing as shown in the illustration.

Uniform pad spacing spaces the pads evenly on each of the

sides. In the abut mode, pads are forced to touch one

another. The variable pad spacing mode places each pad

such that the wirelength is minimized. The last mode

turns off the pad spacing algorithm and the pads remain in

the place specified by the user in the circuitName.cel file.

In the first three cases, the side and sidespace constraints

are observed. The default mode is uniform padspacing.

The optional keyword print_pins causes

TimberWolfMC to output the names of all the one pin

nets in the design into the circuitName.mout file.

The keyword random.seed is useful when the

output data files have been deleted and the data needs to be

regenerated. The random number generator seed is printed

in the circuitName.mout file. If the circuitName.cel,

circuitName.par, and circuitName.mest files are identical,

a second run using the same random.seed value will

yield the exact same output. The circuitName.mest file

should not exist if the run was the first execution of

TimberWolfMC.

The optional keyword restart must be present in

order to resume an execution of TimberWolfMC. This is

useful for resuming a run after a hardware crash or other termination of a run.

14

5.1.7. TWSC - TimberWolfSC parameters
User data parameters:

approximately_fixed_factor integer
feedThruWidth integer layer integer
minimum_pad_space integer
rowSep float

spacer_feed_from_left integer
spacer_name_twfeed { on | off }

spacer_width integer

total_row_length integer
unused_feed_name_twspacer { on | off }
vertical_path_weight float
vertical_track_on_cell_edge { on | off }
vertical_wire_weight float

Program control:
absolute_minimum_feeds { on | off }
cost_only { on | off }
contiguous_pad_groups { on | off }
create_new_cel_file { on | off }
do.fast.global.route { on | off }
do.global.route { on | off }
fast integer
no.graphics { on | off }
graphics.wait { on | off }
no.graphics.update { on | off }
no_explicit_feeds { on | off }
no_feed_at_end { on | off }
old.pin.format { on | off }
orientation_optimization { on | off }
output.at.density { on | off }
padspacing { uniform | abut | variable | exact }
pin_layers_given { on | off }
random.seed integer
restart { on | off }
route_only_critical_nets { on | off }
route_padnets_outside { on | off }
SGGR { on | off }
s low integer

The keyword approximately_fixed_factor modifies the default window for cells which have been

approximately fixed. Normally, a cell is constrained to lie within a window centered at the cell's initial

position and extending one row above, one row below, and plus or minus one average cell width and three

standard deviations in the horizontal direction. The user may globally increase the window size for all

approximately fixed cells by entering the keyword approximately_fixed_factor; the new extent of the

window is plus or minus approximately_fixed_factor rows from the initial position of the cell and

plus or minus approximately_fixed_factor times the default window size in the horizontal direction.

The keyword feedThruWidth followed by an integer is required if global routing is desired. The

integer informs TimberWolfSC of the width of the feed-through cells that are to be inserted should such be

necessary. The layer keyword is followed by an integer specifying routing level where this number cross-

references the layer definitions found in the RULES section of the parameter file in the order that the layers

15

were defined. The first layer defined in the RULES section will become layer 1, the second layer will be

layer 2, and so forth. If the layer is unknown or does not matter, use layer 0.

The optional keyword minimum_pad_space allows the user to specify a minimum space between

the I/O pads.

The required keyword rowSep is followed by a floating point number representing the desired amount

of separation between rows. The amount of separation between rows is this number times the average

height of the rows. This is, if you want the row separation equal to the average row height, then this

number should be 1.0. On the other hand, if you want the row separation to be twice the height of the

rows, then this number should be 2.0. Normally, a value of 1.0 is appropriate.

The optional keyword total_row_length is followed by an integer specifying the total available

row length for a gate array circuit (only). That is, this keyword should only be used when the total row

length is fixed to a value larger than the total cell width.

For gate arrays, it is often the case that the left edge of a cell must begin on a particular grid. That is,

cells need not be adjacent, however, their separation must be a multiple of a certain grid. For example, in

the Primary benchmark circuits (1988 International Workshop on Placement and Routing, Research

Triangle Park, NC), the placement grid is 20 units. To specify this grid, the user enters the optional

keyword spacer_width followed by an integer specifying the grid upon which the left edges of the cells

must snap to.

The optional keyword spacer_feed_from_left followed by an integer specifies the location of an

implicit feed (vertical routing track) relative to the left edge of the spacer, whose width is specified by

spacer_width. For example, on the Primary gate array benchmark circuits, the 20 micron spacer is specified

as:

spacer_width 20

spacer_feed_from_left 0

spacer_feed_from_left 10

spacer_feed_from_left 20

That is, each 20 micron spacer has room for three vertical routing tracks, since the track pitch is 10.

In the TimberWolfSC output, the spacer is output as a cell with name GATE_ARRAY_SPACER. The

leftmost implicit feed has a top pin with name SPACER_FEED_TOP_1 and a bottom pin with name

SPACER_FEED_BOTTOM_1. The rightmost (and last) implicit feed pins on the spacer have names

SPACER_FEED_TOP_n and SPACER_FEED_BOTTOM_n, where n is the number of implicit feeds on

the spacer. Any number of spacer feeds may be specified.

The optional keyword vertical_track_on_cell_edge also pertains to gate arrays. As in the case

of the Primary benchmarks, if implicit feeds are present on both the left and right edges of each cell, then

on any two adjacent cells, two feeds (one from each cell) will overlap. The keyword

vertical_track_on_cell_edge will eliminate the possibility of overlapping feeds due to the

specification of implicit feeds on both the left and right edges of the cells.

The keyword spacer_name_twfeed is an optional, and is only applicable if the user has selected the

gate array mode. As presented earlier, the default name of the spacer cell is GATE_ARRAY_SPACER. If

the spacer_name_twfeed keyword is entered in the circuitName.par file, then the name of the spacer cell

will be twfeed instead. Note that the names of the pins on the spacer cell will be the same.

16

Although the TimberWolfSC global routing algorithm is such that few unused feed through cells are

placed into the rows, the user may want to remove all unused feed through cells. It is unwise to simply

remove these from the .pl1 file since that would invalidate the global routing (as stored in the .pin file). In

an attempt to aid the user in identifying which feeds in the .pl1 file are unused, the selection of the

unused_feed_name_twspacer keyword changes the name of each unused feed from its usual name

twfeed (concatenated with a unique integer) to twspacer (concatenated with a unique integer).

The keyword vertical_path_weight is required. The floating point number represents the cost for

one unit of vertical path length, given that the cost for one unit of horizontal path length is unity. This

features allows the user to specify that the capacitance (or, in some sense, the delay) per unit length is

different for the vertical routing layer as opposed to the horizontal routing layer. TimberWolfSC will seek

to ensure that for each path specified in the circuitName.net file, the horizontal path length plus

vertical_path_weight times the vertical path length is above the lower bound and below the upper bound for

that path.

Inclusion of the absolute_minimum_feeds keyword implies that the global router is to insert an

absolute minimum of explicit feedthrough cells. This minimum is dictated by the placement. This

keyword should not be chosen routinely since it may cause the global router to use additional routing

tracks. However, for gate arrays in which explicit feeds cannot be added, this keyword can be used to

advantage. For example, if the global router added a few feeds, then execute a second run using this

keyword. In general, significantly fewer feeds will be used, although accompanied (usually) with an

increase in routing tracks.

The keyword cost_only is an optional entry in the file circuitName.par. Its presence will result in

TimberWolfSC reading the input files, generating an initial placement, computing the initial cost,

generating the output files, and then graceful death. Including this keyword is highly recommended on the

first run on the input files. Any errors will be directed to the output file called circuitName.out.

By default, members of pad groups are placed contiguously. In other words, no nonmember pads can

be placed between the member pads. To change the setting to noncontiguous, the parameter value off must

follow the keyword contiguous_pad_groups. In this case, nonmember pads could be placed between

the pads.

The optional keyword create_new_cel_file instructs TimberWolfSC to create a new

circuitName.ncel at the end of the run which contains the final placement information by using the

initially keyword. The choice of fixed, nonfixed, approximately_fixed, or rigidly_fixed is based

on the selection in the original circuitName.cel. For example, if a cell was originally specified with the

fixed keyword, then that keyword will be used in the new circuitName.ncel file. If no initial placement was

specified for a given cell, then the keyword nonfixed will be used in the new .ncel file. A new

circuitName.ncel file will overwrite any existing circuitName.ncel file. Move it to circuitName.cel and

rerun TimberWolf.

There are no required parameters for controlling the quality of the solution and the CPU time used by

TimberWolfSC. That is, by default TimberWolfSC is set up to yield what we feel approximates the best

attainable solutions. However, experienced TimberWolfSC users may wish to experiment with the optional

parameters for controlling the trade-off between CPU time and solution quality. The keywords fast and

slow represent the set of optional parameters.

The keyword fast is an optional entry in the file circuitName.par. The inclusion of this keyword will

cause TimberWolfSC to be executed about n times faster, where n is the value of the integer following the

17

keyword fast. The quality of the placement will tend to decrease as n is made larger than one (the smaller

the value of n, the better the result). However, it is our experience that TimberWolfSC will outperform

other placement algorithms even with n set in such a manner that the run time of TimberWolfSC matches

the run time of the other (faster) algorithm. For chip-planning applications, a value of n in the range of

five to ten is recommended.

The keyword slow is an optional entry causing TimberWolfSC to be executed about n times longer

than the default. The value of n is specified by the integer following the keyword slow. In some cases,

you may get a slightly better result. However, only use the slow option if CPU time is of no interest to

you.

The presence of the optional keyword do.global.route will result in TimberWolfSC completing a

global routing step. Following this step, pins have been selected for interconnection in particular channels

so as to minimize the total number of wiring tracks required. TimberWolfSC optimizes net segment

placement (which side of a row to place a net segment, when it is switchable) so as to reduce the number of

wiring tracks required. In this step, the pins for each net are assigned a group number. Pins with the same

group number are to be connected. More details are available in Section 6 on the presentation of the

circuitName.pin file.

Currently, there are two global routers: an internal global router useful for standard cell and gate array

circuits which can add additional feedthroughs to complete the routing, and SGGR, a sea-of-gates global

router developed specifically for multiple-metal-layer sea-of-gates circuits and subsequently extended to

handle gate arrays and standard cell circuits. If the number of implicit feed through cells (or, implicit feeds)

is not enough, SGGR will terminate with a message indicating that this may be the problem. If you get

this message, you may restart TimberWolfSC (using the restart mechanism) and request the default global

router. If the keyword SGGR is specified, SGGR will be executed; otherwise, the default global router

will be run. In both cases, the keyword do.global.route must be turned on.

The graphics system has three control keywords: no.graphics which allows the program compiled

with the X11 library to run without displaying graphics, graphics.wait which tells TimberWolfSC to

wait for the user to enter commands after each step in the process, and no.graphics.update which does

not update the graphics until the end of the simulated annealing run. To continue execution from a graphics

wait loop, the user clicks on the FILE menu and selects CONTINUE PGM. See the section on graphics

for more details concerning the graphics capabilities and commands.

The new pin output format outputs a pseudopin for every connection to a macro or pad whereas the

old format only outputs a pseudopin only for nets that leave the channel. If the old format is desired, use

old.pin.format (not recommended).

The optional keyword orientation_optimization instructs TimberWolfSC to perform only the

following steps: read the initial placement information from the circuitName.cel file, optimize the

orientation of the cells, and execute the global router.

If the keyword output.at.density is present, the placement will be output according to the density

determined by the global router. This should not be used in the case of mixed macro/standard cell circuits.

The optional keyword padspacing controls the pad spacing mode. The are four modes of operation:

uniform pad spacing, abutting pad spacing, variable pad spacing, and exact pad spacing. Uniform pad

spacing spaces the pads evenly on each of the sides. In the abut mode, pads are forced to touch one another.

The variable pad spacing mode places each pad such that the wirelength is minimized. The last mode turns

off the pad spacing algorithm and the pads remain in the place specified by the user in the circuitName.cel

18

file. In the first three cases, the side and sidespace constraints are observed. The default mode is uniform

padspacing.

Normally, the pin layers must be specified. If the keyword pin_layers_given is assigned the

parameter value off, the pin's layer does not need to be defined, and thus, backward compatibility with older

versions of TimberWolfSC is maintained. Warning: this is only true when TimberWolfSC is run as a

stand alone program.

The keyword random.seed is useful when the output data files have been deleted and the data needs

to be regenerated. The random number generator seed is printed in the circuitName.out file. If the

circuitName.cel and circuitName.par files are identical, a second run using the same random.seed value

will yield the exact same output.

The optional keyword restart must be present in order to resume an execution of TimberWolfSC.

This is useful for resuming a run after a hardware crash or other termination of a run. Crash recovery will

be discussed later.

Normally, the TimberWolfSC internal global router has the freedom to insert feedthroughs to connect

pins in the interior of the core area to pins on the I/O pads at the perimeter of the design if the wirelength or

congestion is minimized. If the keyword route_padnets_outside is present, the routing will instead be

forced to leave the channel in which the interior pins reside, and enter the channels which surround the core

region. This will minimize feedthroughs but may lengthen the wirelength and increase the congestion

outside the core area.

19

5 . 2 . THE FORMAT OF THE CIRCUITNAME.CEL FILE

The file circuitName.cel contains the descriptions of the standard cells (row-based cells), macro cells

and pads, as well as the netlist. Comments may be added using C-style comments (/* */) with the

restriction that comments are no longer than 2000 characters in length. The description must be ordered as

follows: standard cells must precede the macro cells which must precede the pads. The complete BNF for

the TimberWolf system is given in Appendix A. Each entry in circuitName.cel for row-based cells takes on

the following form:

5.2.1. Standard Cell / Gate Array Cell Definition
cell string string
[legal_block_classes n block_class_1 block_class_n]
[swap_group string]
[ECO_added_cell]
[nomirror]
[initially { fixed | nonfixed | approximately_fixed | rigidly_fixed } integer from {left |

right} of block integer]
[orient { 0 | 1 | 2 | 3 }]
left integer right integer bottom integer top integer

pin name string signal string layer integer integer integer

[equiv name string layer integer integer integer]
pin name string signal string layer integer integer integer

[unequiv name string layer integer integer integer]
[pin_group

pin name string/string signal string layer integer integer integer

[equiv name string/string layer integer integer integer]
.
.
.

pin name string/string signal string layer integer integer integer

[equiv name string/string layer integer integer integer]
 end_pin_group]

The keyword cell begins the description of a cell. The string following the keyword cell is ignored

completely by TimberWolf. It can be used for any purpose by the user. The second string following the

keyword cell must be the name of the cell. TimberWolf outputs the placement information in terms of

these cell names.

The next line in the description of a cell is optional. The legal_block_classes feature allows the

user to constrain each cell to a set of block classes. Here, n is an integer specifying how many block

classes you are going to list, followed by a list of integers -- each one of which is a block class as defined

in the Genrows program. The block class definitions are generated by the Genrows program and output into

the circuitName.blk file. Genrows will allow the user to associate a class number with any of the rows as

shown below in the examples. The blocks listed in the circuitName.blk file are listed from the top but

numbered from the bottom on the screen

20

EXAMPLE:

cell 18 latch
legal_block_classes 3 8 5 9
left ...
.
.
.

This implies that the cell named latch must be confined to the rows whose block class is one of 8, 5 or

9. Keep in mind that any number of rows may have been specified as having a given block class.

If a cell is to be allowed in any row, then simply don't include a legal_block_classes line.

EXAMPLE 2:

.blk file:
row 6
row 0 11 123 37 class 1 (first row)
row 0 63 123 89 class 1
row 0 115 123 141 class 2
row 0 187 123 193 class 2
row 0 219 123 245 class 3
row 0 271 123 297 class 3 (last row)

Suppose that the description of a cell includes the following line in the .cel file:

legal_block_classes 2 1 2

This specifies that the cell is confined to rows 1 through 4. Further, suppose that the description of a

cell includes the following line:

legal_block_classes 2 1 3

This specifies that the cell is confined to rows 1 or 2, or, 5 or 6. Note that a cell in the .cel file

without a legal_block_classes line can go into any of rows 1 through 6. Alternatively, you could also

specify a line as follows if that was what you wanted:

legal_block_classes 3 1 2 3

Another new optional feature is the gate swapping facility. Any cells which are to participate in gate

swapping must have a line as follows:

swap_group string

If you want gate swapping to occur between two or more cells, then you must give each of the

particular cells the same swap_group. The gate swapping facility is accomplished by exchanging groups

of pins between any cells which have the same swap_group. See the section on pin groups for more

details on defining the groups of pins to be swapped.

Another optional feature is the Engineering Change Order (ECO) handling capability. This feature is

useful when additional standard cells have been added to the netlist, and yet you want the placement of the

"old" cells to remain essentially exactly in their positions as determined by a previous run. The "old"

placement information must be given in the .cel by means of the initially keyword (any of fixed,

21

nonfixed, etc. may be used since when ECO requests are present in the circuitName.cel file, the placement

of the "old" cells will be unchanged relative to their initial specification). Any cell having the following

line within its description

ECO_added_cell

will have its initial placement information completely disregarded. Instead, a quick procedure which is a

variant of force-directed placement is used to place the new cell to minimize total wire length.

If you anticipate making use of this ECO capability, then it would be very useful to always place the

keyword create_new_cel_file in the circuitName.par file. Then, if you find that cells are to be added (or

deleted), simply add (or delete) these cells from the previously generated circuitName.ncel file. Be sure to

append the line

ECO_added_cell

to the description of the added cells and then make this new circuitName.ncel file to be the new

circuitName.cel file. The execution of TimberWolf will then quickly yield an updated placement, preserving

the locations of the "old" cells and placing the new cells while seeking to minimize the total wire length.

This feature is particularly useful for generating a subsequent placement which is close to that

obtained from a previous run. For example, suppose a great deal of effort was made to get a particular

placement correct with respect to timing restrictions. However, suppose that the designer then adds or

deletes cells or nets from the .cel file, or changes the number of rows. A new TimberWolf run will

generate a completely different placement, one that probably has a similar total wire length and chip area,

but one with a whole new set of timing problems, etc. Hence, for such a subsequent placement, one would

very much like to preserve the general character of the previous placement. This can now be achieved.

The keyword nomirror is optional and specifies that a cell in a row cannot have its x-coordinates

mirrored. By default, mirroring is allowed. This should come before the preplacement option.

Preplacing a cell is optional. This is accomplished with the keyword initially followed by one of

four choices for the subsequent keyword: fixed, nonfixed, approximately_fixed, and

rigidly_fixed. If fixed is specified, the cell is to remain fixed at the specified location, whereas,

nonfixed allows the cells to move from their specified initial positions. The integer following fixed or

nonfixed represents how far from the left or right end of a row the cell should be placed initially.

Following the keyword from, the user selects either left or right to indicate whether the integer

represents a distance from the left or right end of the row. If the user selects left, then the distance is the

amount the left edge of the cell is to be placed from the left end of the block (row). On the other hand, if the

user selects right, then the distance is the amount the right edge of the cell is to be placed from the right

end of the block. Following the keywords of and block is an integer specifying the block (row) into

which the cell is to be placed initially. This integer represents a row number, in which the rows are

numbered starting from the bottom of the layout. The approximately_fixed keyword instructs

TimberWolf to keep the placement of this cell close to its initial position. The cell is constrained to lie

within a window centered at the cell's initial position and extending one row above, one row below, and

plus or minus one average cell width and three standard deviations in the horizontal direction. The user may

globally increase the window size for all approximately fixed cells by entering the keyword

approximately_fixed_factor in the .par file:

TWSC*approximately_fixed_factor: integer

22

If this keyword is found in the .par file, the extent of the window is plus or minus

approximately_fixed_factor rows from the initial position of the cell and plus or minus

approximately_fixed_factor times the default window size in the horizontal direction. Gate array

mode is triggered by the presence of rigidly_fixed cells, which in turn requires the presence of the

spacer_width keyword. The use of the rigidly_fixed keyword means that the cell must end up at exactly

that coordinate.

The user may input an initial cell orientation for row-based cells through the use of the keyword

orient followed by an integer. Note that the value of the integer must be one of 0, 1, 2, or 3. The

meaning of the orientation numbers is presented in section 5.2.2.

The line beginning with the keyword left is required. Each keyword left, right, bottom, and top

is followed by an integer representing the distance of each edge from the exact center of the cell. If a cell has

an odd width, the x-center is truncated to form an integer. Note that the integers following left and

bottom are necessarily negative and that the integers following right and top are necessarily positive.

Furthermore, the following relationships must hold:

right - | left | = 0 or 1
right + left = 0 or 1
top - | bottom | = 0 or 1
top - bottom = 0 or 1

The remainder of the description of a cell indicates the position of the pins and the signal or net names

associated with each pin.

Each pin description begins with the keyword pin and is followed by the keyword name which is in

turn followed by a string representing the name of the pin. Following the keyword signal is a string

representing the name of the signal or net to which this pin is to be connected.

The layer keyword is followed by an integer specifying routing level. This number cross-references

the layer definitions found in the RULES section of the parameter file in the order that the layers were

defined. The first layer defined in the RULES section will become layer 1, the second layer will be layer 2,

and so forth. If the layer is unknown or does not matter, use layer 0.

The pair of integers following the layer definition represent the x-y coordinates of the location of the

pin relative to the center of the cell. Pins do not have to be on the boundary but they may not be outside

the boundary.

The description of an equivalent (or internally connected) pin begins with the keyword equiv and is

followed by the keyword name which in turn is followed by a string representing the name of this pin.

Next, the layer information is specified using the layer keyword followed by the routing level. Following

the layer definition are two integers specifying the location of the equivalent pin relative to the center of the

cell. Note that pins described by equiv are assumed to be connected to the same signal or net name as the

last entered pin whose description begins with the keyword pin.

If only one of an electrically-equivalent pair of pins can be used (for example, because the resistance of

the poly line connecting them is too high), the description of the equivalent pin must begin with the

keyword unequiv. The keyword unequiv is followed by the keyword name which in turn is followed by

a string representing the name of the unequivalent pin. Next are two integers specifying the location of the

unequivalent pin relative to the center of the cell. Note that pins described by unequiv are assumed to be

connected to the same signal or net name as the last entered pin whose description begins with the keyword

23

pin. Following a pin description beginning with pin, any number of pin descriptions beginning with

equiv may follow. However, only one unequiv may be specified following a pin description beginning

with the keyword pin.

An example of a cell description in which the cell is to be preplaced and mirroring is not allowed is

shown below.

cell 78 ABcell8
nomirror

initially fixed 0 from left of block 3
left -50 right 50 bottom -25 top 25
pin name pin2 signal A layer 1 0 25

equiv name pin2 layer 1 0 -25

This is an example of the description of a nonpreplaced cell in which mirroring is allowed.

cell 79 ABcell11
left -50 right 50 bottom -25 top 25
pin name pin5 signal C layer 0 0 25

equiv name pin5 layer 0 0 -25

TimberWolf supports implicit feed throughs (or built-into-the-cell feeds), common in multiple metal

circuits. The user must enter the signal name TW_PASS_THRU for any such pins. If implicit feed-

through paths are present, TimberWolf will use such a path instead of inserting a feed-through cell

whenever possible. An example follows:

cell 1 cell1
left -50 right 50 bottom -25 top 25
pin name 1 signal TW_PASS_THRU layer 2 30 -52

equiv name 2 layer 2 30 53

pin name 3 signal TW_PASS_THRU layer 2 -30 -52

equiv name 4 layer 2 -30 53

The optional keyword pin_group begins the definition of a swappable gate. The set of pins on a

cell which constitute a gate are delineated as follows:

pin_group
pin name 1/a signal S14 layer 2 -9 -24

equiv name 1/a layer 2 -9 24
pin name 2/a signal S13 layer 2 -15 -24

equiv name 2/a layer 2 -15 24
pin name 3/a signal S12 layer 2 -11 -24

equiv name 3/a layer 2 -11 24
end_pin_group

Note that the keyword pin_group functions as a "begin" in PASCAL or a "{" in C. Similarly,

end_pin_group functions as an "end" or "}". Obviously it is assumed that each pin group within a

swap_group has the same number of pins. Note that the "/" is a required part of the pin name for each pin

in a gate. When swapping two gates, the pins are swapped on a one-to-one basis. It must be the case that

for any pin within a gate, there is a corresponding pin in the other gate such that the pin names prior to the

24

"/" match. The portion of the pin name after the "/" is used to ensure uniqueness for the complete pin

name.

Note further that by defining each "gate" to consist of a single pin and by giving each cell a unique

swap_group, then TimberWolf will in effect optimize the layout taking into account the logical

equivalence of pins within each cell.

Finally, keep in mind that the pin names stay local to their original cells in the output files.

EXAMPLE:
(two cells belonging to the same swap group where each has one swappable gate)

cell 337 U3
swap_group U3-U4
left -16 right 16 bottom -24 top 24
pin name 00#I01 signal S1088 layer 1 11 -24

equiv name 01#I01 layer 1 11 24
pin name 00#I02 signal S1090 layer 1 13 -24

equiv name 01#I02 layer 1 13 24
pin_group

pin name 5/a signal S14 layer 1 -9 -24
equiv name 5/a layer 1 -9 24

pin name 6/a signal S13 layer 1 -15 -24
equiv name 6/a layer 1 -15 24

pin name 7/a signal S12 layer 1 -11 -24
equiv name 7/a layer 1 -11 24

end_pin_group
pin name 00#TW_1 signal TW_PASS_THRU layer 1 -13 -24

equiv name 01#TW_1 layer 1 -13 24
pin name 00#TW_2 signal TW_PASS_THRU layer 1 -7 -24

equiv name 01#TW_2 layer 1 -7 24
pin name 00#TW_3 signal TW_PASS_THRU layer 1 -5 -24

equiv name 01#TW_3 layer 1 -5 24
pin name 00#TW_4 signal TW_PASS_THRU layer 1 -3 -24

equiv name 01#TW_4 layer 1 -3 24
pin name 00#TW_5 signal TW_PASS_THRU layer 1 -1 -24

equiv name 01#TW_5 layer 1 -1 24
pin name 00#TW_6 signal TW_PASS_THRU layer 1 1 -24

equiv name 01#TW_6 layer 1 1 24
pin name 00#TW_7 signal TW_PASS_THRU layer 1 3 -24

equiv name 01#TW_7 layer 1 3 24

25

cell 448 U4
swap_group U3-U4
left -16 right 16 bottom -24 top 24
pin name 00#I01 signal S1088 layer 1 11 -24

equiv name 01#I01 layer 1 11 24
pin name 00#I02 signal S1089 layer 1 13 -24

equiv name 01#I02 layer 1 13 24
pin_group

pin name 5/b signal S19 layer 1 -9 -24
equiv name 5/b layer 1 -9 24

pin name 6/b signal S18 layer 1 -15 -24
equiv name 6/b layer 1 -15 24

pin name 7/b signal S17 layer 1 -11 -24
equiv name 7/b layer 1 -11 24

end_pin_group
pin name 00#TW_1 signal TW_PASS_THRU layer 1 -13 -24

equiv name 01#TW_1 layer 1 -13 24
pin name 00#TW_2 signal TW_PASS_THRU layer 1 -7 -24

equiv name 01#TW_2 layer 1 -7 24
pin name 00#TW_3 signal TW_PASS_THRU layer 1 -5 -24

equiv name 01#TW_3 layer 1 -5 24
pin name 00#TW_4 signal TW_PASS_THRU layer 1 -3 -24

equiv name 01#TW_4 layer 1 -3 24
pin name 00#TW_5 signal TW_PASS_THRU layer 1 -1 -24

equiv name 01#TW_5 layer 1 -1 24
pin name 00#TW_6 signal TW_PASS_THRU layer 1 1 -24

equiv name 01#TW_6 layer 1 1 24
pin name 00#TW_7 signal TW_PASS_THRU layer 1 3 -24

equiv name 01#TW_7 layer 1 3 24

Unused gates in a cell can also be defined. That is, the pins comprising such a gate are available to be

used as pass throughs during global routing. TW_SWAP_PASS_THRU is the signal name for pass

throughs on gates (recall that TW_PASS_THRU is the proper signal name for regular pass throughs on

a cell).

In the example below, note that their are six gates defined among the three cells. Three of the six

gates are unused. At the end of a TimberWolf run, any of the six gates could end up on any of the three

cells.

26

EXAMPLE:

cell 554 U5
swap_group U5-U6-U7
left -16 right 16 bottom -24 top 24
pin name 00#I01 signal S1088 layer 1 11 -24

equiv name 01#I01 layer 1 11 24
pin name 00#I02 signal S1093 layer 1 13 -24

equiv name 01#I02 layer 1 13 24
pin name 00#I04 signal S22 layer 1 -9 -24

equiv name 01#I04 layer 1 -9 24
pin_group

pin name 1/a signal S21 layer 1 -15 -24
equiv name 1/a layer 1 -15 24

pin name 2/a signal S20 layer 1 -11 -24
equiv name 2/a layer 1 -11 24

end_pin_group
pin_group

pin name 1/b signal TW_SWAP_PASS_THRU layer 1 -13 -24
equiv name 1/b layer 1 -13 24

pin name 2/b signal TW_SWAP_PASS_THRU layer 1 -7 -24
equiv name 2/b layer 1 -7 24

end_pin_group
pin name 00#TW_3 signal TW_PASS_THRU layer 1 -5 -24

equiv name 01#TW_3 layer 1 -5 24
pin name 00#TW_4 signal TW_PASS_THRU layer 1 -3 -24

equiv name 01#TW_4 layer 1 -3 24
pin name 00#TW_5 signal TW_PASS_THRU layer 1 -1 -24

equiv name 01#TW_5 layer 1 -1 24
pin name 00#TW_6 signal TW_PASS_THRU layer 1 1 -24

equiv name 01#TW_6 layer 1 1 24
pin name 00#TW_7 signal TW_PASS_THRU layer 1 3 -24

equiv name 01#TW_7 layer 1 3 24

27

cell 655 U6
swap_group U5-U6-U7
left -16 right 16 bottom -24 top 24
pin name 00#I01 signal S1088 layer 1 11 -24

equiv name 01#I01 layer 1 11 24
pin name 00#I02 signal S1097 layer 1 13 -24

equiv name 01#I02 layer 1 13 24
pin name 00#I04 signal S25 layer 1 -9 -24

equiv name 01#I04 layer 1 -9 24
pin_group

pin name 1/c signal S24 layer 1 -15 -24
equiv name 1/c layer 1 -15 24

pin name 2/c signal S23 layer 1 -11 -24
equiv name 2/c layer 1 -11 24

end_pin_group
pin_group

pin name 1/d signal TW_SWAP_PASS_THRU layer 1 -13 -24
equiv name 1/d layer 1 -13 24

pin name 2/d signal TW_SWAP_PASS_THRU layer 1 -7 -24
equiv name 2/d layer 1 -7 24

end_pin_group
pin name 00#TW_3 signal TW_PASS_THRU layer 1 -5 -24

equiv name 01#TW_3 layer 1 -5 24
pin name 00#TW_4 signal TW_PASS_THRU layer 1 -3 -24

equiv name 01#TW_4 layer 1 -3 24
pin name 00#TW_5 signal TW_PASS_THRU layer 1 -1 -24

equiv name 01#TW_5 layer 1 -1 24
pin name 00#TW_6 signal TW_PASS_THRU layer 1 1 -24

equiv name 01#TW_6 layer 1 1 24
pin name 00#TW_7 signal TW_PASS_THRU layer 1 3 -24

equiv name 01#TW_7 layer 1 3 24

28

cell 745 U7
swap_group U5-U6-U7
left -16 right 16 bottom -24 top 24
pin name 00#I01 signal S1088 layer 1 11 -24

equiv name 01#I01 layer 1 11 24
pin name 00#I02 signal S16 layer 1 13 -24

equiv name 01#I02 layer 1 13 24
pin name 00#I04 signal S28 layer 1 -9 -24

equiv name 01#I04 layer 1 -9 24
pin_group

pin name 1/e signal S27 layer 1 -15 -24
equiv name 1/e layer 1 -15 24

pin name 2/e signal S26 layer 1 -11 -24
equiv name 2/e layer 1 -11 24

end_pin_group
pin_group

pin name 1/f signal TW_SWAP_PASS_THRU layer 1 -13 -24
equiv name 1/f layer 1 -13 24

pin name 2/f signal TW_SWAP_PASS_THRU layer 1 -7 -24
equiv name 2/f layer 1 -7 24

end_pin_group
pin name 00#TW_3 signal TW_PASS_THRU layer 1 -5 -24

equiv name 01#TW_3 layer 1 -5 24
pin name 00#TW_4 signal TW_PASS_THRU layer 1 -3 -24

equiv name 01#TW_4 layer 1 -3 24
pin name 00#TW_5 signal TW_PASS_THRU layer 1 -1 -24

equiv name 01#TW_5 layer 1 -1 24
pin name 00#TW_6 signal TW_PASS_THRU layer 1 1 -24

equiv name 01#TW_6 layer 1 1 24
pin name 00#TW_7 signal TW_PASS_THRU layer 1 3 -24

equiv name 01#TW_7 layer 1 3 24

29

5.2.2. Hard Macro Cell Definition
We will now describe the arbitrary rectilinear shaped cells known as macros. Hard macro cells are

cells in which all geometric information is known. They are described as follows:

hardcell string name string
[fixed at integer from { L | R } integer from { B | T }]
[fixed neighborhood

 integer from { L | R } integer from { B | T }
 integer from { L | R } integer from { B | T }]

corners integer integer integer ... integer integer
class integer
orientations integer ... integer
pin name string signal string layer integer integer integer
[equiv name string layer integer integer integer]
[instance string

corners integer integer integer ... integer integer
class integer
orientations integer ... integer
pin name string signal string layer integer integer integer
equiv name string layer integer integer integer

]

The keyword hardcell begins the description of a macro cell. The string following the keyword

hardcell indicates the cell type. It is furnished for the user's convenience but it will be ignored by

TimberWolf. The string following the keyword name is the name of the cell. TimberWolf outputs the

placement information in terms of the names of the cells.

The second construct of the hardcell format is an optional structure which specifies where a cell is to

be fixed. A cell's center can be fixed at a single point or constrained to remain within a neighborhood. A

point is specified by its x coordinate relative to either the left or right core boundary and its y coordinate

relative to the top or bottom core edge following the keyword fixed. If the cell is to be constrained in a

neighborhood, the user gives the two points which describe the bounding box of the neighborhood

following the phrase fixed neighborhood. TimberWolf will not allow the center of the cell to leave the

given bounding box. Since TimberWolf builds a topology which depends on cell and routing area, the user

specifies the placements relative to the core edges. L, R, B, T represent the left, right, bottom, and top

edges of the core, respectively. If fixed cells are present in the circuitName.cel file, the chip core

dimensions should be specified in the circuitName.par file. See example in Figure 5.2.2.

The next line in the description of a macro cell describes the geometry of the cell and, in the process,

indicates the initial placement location for the cell. TimberWolf handles cells of any rectilinear shape.

Consequently, the description of the cell geometry is given in terms of a vertex list for the cell, starting

from the leftmost of the lowest vertices and proceeding in a clockwise manner around the cell. The number

of vertices is equal to the number of edges (or sides) of the cell (since the first vertex is not repeated). The

integer following the keyword corners indicates the number of vertices (or corners) needed to describe the

shape of the cell. Suppose that the value of this integer is represented by numCorners. TimberWolf then

expects to find numCorners pairs of integers following the number of corners. The first pair of integers

represents the x-y coordinates of the leftmost of the lowest vertices, and the last pair of integers represents

the x-y coordinates of the next-leftmost of the lowest vertices. The pairs of integers need not be entered on

the same line in the description file. TimberWolf generates the core area such that all points in the core

area lie in the first quadrant (that is, all points have non-negative x and y values). Consequently, it is

30

strongly suggested that the user do the same. Since TimberWolf generates its own initial placement

topology, including pad placement, the user need not be concerned with the positions of the cells.

However, it is the case that the pair of integers describing the cell vertices are taken absolutely. The user is

permitted to overlap the cells (or stack on top of one another).

NOTE: the order of the corners and numCorners has been reversed from previous versions to make

the language context free. An awk script has been provided to transform from the old format to the new

format To execute the script type:

reverse_corners circuitName <CR>

This will generate a new cell file name circuitName.ncel.

The next required field is the class keyword. It is used to specify exchange classes between cells.

Only cells with the same class number may be exchanged. Normally there are no restrictions and all class

fields should be set to the same non-negative number, preferably zero.
 ˚

0 1 2 3

4 5 6 7

Figure 5.2.1. TimberWolf orientations.

The next required structure is the orientation list. Following the keyword orientations is a list of

valid orientations for the cell. There are 8 possible orientations for a cell as shown in the above figure.

The first integer in the list specifies the initial orientation. The cell orientation numbering scheme

employed by TimberWolf is: (0) Orientation 0 is the cell geometry as described above in the vertex list. (1)

Orientation 1 is the cell geometry after mirroring the y coordinates with respect to orientation 0. (2)

Orientation 2 is the cell geometry after mirroring the x coordinates with respect to orientation 0. (3)

Orientation 3 is the cell geometry after a rotation of 180 degrees with respect to orientation 0 (which is the

same as a mirror of the y coordinates with respect to orientation 0 followed by a mirror of the x

coordinates). (4) Orientation 4 is the cell geometry after a combination of a mirror of the cell's x

coordinates followed by a 90 degree rotation of the cell with respect to orientation 0. (5) Orientation 5 is

the cell geometry after a combination of a mirror of the cell's x coordinates followed by a -90 degree

rotation of the cell with respect to orientation 0. (6) Orientation 6 is the cell geometry after a 90 degree

rotation of the cell with respect to orientation 0. (7) Orientation 7 is the cell geometry after a -90 degree

rotation of the cell with respect to orientation 0.

31

The strategy behind the numbering scheme is based on the fact that the first 4 orientations (numbered

0 through 3) have the same aspect ratio and that the second 4 orientations (numbered 4 through 7) have the

same aspect ratio, an aspect ratio which is the inverse of the aspect ratio of orientations 0 through 3.

Note: The cell vertices are always input as orientation 0. If the initial orientation is nonzero,

TimberWolf will perform the appropriate transformation.

 ̊

"Core" Region

Pad 9 Pad 7Pad 8

Pad 1 Pad 3Pad 2
C

ellB

CellE

 P
 a
 d
 5

 P
 a
 d
 6

 P
 a
 d
 4

CellF

 P
 a
 d
10

 P
 a
 d
12

 P
 a
 d
11

CellD

CellA

CellE

(260,380)

cell fixed but rotation allowed

cell
fixed

cell constrained in
neighborhood

(200,300)

(400,500)

(325,450)

(340,350)(250,330)

(390,490)

Figure 5.2.2. TimberWolf hardcell example.

This example contains a pair of rectangular cells:

hardcell 1 name cellA
corners 4 300 455 300 485 360 485 360 455
hardcell 2 name cellB
corners 4 220 390 220 485 240 485 240 390

The example also contains an L-shaped macro cell:

hardcell 3 name cellC
corners 6 270 420 270 485 290 485 290 450 330 450 330 420

In addition, cellD is constrained to be within a neighborhood:

hardcell 4 name cellD
corners 4 325 390 325 410 380 410 380 390
fixed neighborhood 140 from R 120 from T

10 from R 10 from T

We have also include two fixed cells:

hardcell 5 name cellE
corners 4 300 315 300 370 360 370 360 315
fixed at 60 from R 50 from B
class 0 orientations 0

hardcell 6 name cellF
corners 4 220 320 220 370 265 370 265 320
fixed at 50 from L 30 from B
class 0 orientations 0 1 2 3 4 5 6 7

32

For the circuit in Figure 5.2.2, the following line should be added in the circuitName.par file to

specify the references properly:

TWMC*core: initially 200 300 400 500

TimberWolf will read the input data, set up the proper constraints, and shift origin to the default (0,0).

If the user wishes for the origin to remain as shown, they should add an origin request in the

circuitName.par file:

TWMC*origin: 200 300

The remainder of the description of a macro cell indicates the positions of the pins and the signal (or

net) names associated with each pin. Each pin description begins with the keyword pin and is followed by

the keyword name, which in turn is followed by a string representing the name of the pin. Following the

keyword signal is a string representing the name of the signal (or net) to which this pin is to be

connected. The layer keyword is followed by an integer specifying the routing level. This number cross-

references the layer definitions found in the RULES section of the circuitName.par file in the order that the

layers were defined. The first layer defined in the RULES section will become layer 1, the second layer will

be layer 2, and so forth. If the layer is unknown or does not matter, use layer 0. The pair of integers

following the layer definition represent the absolute x-y coordinates of the location of the pin. Pins do not

have to be on the boundary but they may not be outside the boundary.

The description of an equivalent (or internally connected) pin begins with the keyword equiv and is

followed by a string representing the name of the equivalent pin. The layer information follows as defined

previously. The last two integers again represent the absolute x-y coordinates of the location of the

equivalent pin. Note that pins described by equiv are assumed to be connected to the same signal or net

name as the last entered pin whose description begins with the keyword pin. Following a pin description

beginning with pin, any number of pin descriptions beginning with equiv may follow.

An example of a macro cell description, including pins, is shown below:

hardcell 5 name tw5
corners 8 100 100 100 800 200 800 200 400 400 400 400

800 500 800 500 100
class 0 orientations 0 1 2 3 4 5 6 7
pin name 1 signal net1 layer 1 100 200
pin name 2 signal net2 layer 2 100 600
equiv name 3 layer 2 200 600
pin name 4 signal net3 layer 1 150 800
pin name 5 signal net4 layer 2 300 400
equiv name 6 layer 1 300 100
pin name 7 signal net5 layer 2 400 600
equiv name 8 layer 1 500 600
pin name 9 signal net6 layer 1 450 800
pin name 10 signal net7 layer 2 500 200

A new feature in TimberWolf is the ability to specify multiple instances of the same cell.

TimberWolf will optimize the placement using the instance that will result in the best final cost. The

keyword instance followed by a string (the instance name) begins a new instance of the current cell. The

first description of the cell is known as the primary instance. All other instances are referred to by the

instance name given by the user. All subsequent instances must have the same pin to signal mapping as

33

the primary instance. In other words, all instances must both be logically and electrically equivalent but

geometric information may be changed. There is no limit to the number of cell instances. An example of

a cell with two instances follows:

hardcell 5 name tw5
corners 8 100 100 100 800 200 800 200 400 400 400 400

800 500 800 500 100
class 0 orientations 0 1 2 3 4 5 6 7
pin name 1 signal net1 layer 2 100 200
pin name 2 signal net2 layer 1 100 600
instance the_other_instance
corners 4 100 100 100 800 500 800 800 100
class 0 orientations 0 1 2 3 4 5 6 7
pin name 1 signal net1 layer 1 100 600
pin name 2 signal net2 layer 2 500 600

34

5.2.3. Soft Macro Cell Format
Each entry in circuitName.cel for soft macro cells takes on the following form:

softcell string name string
[fixed at integer from { L | R } integer from { B | T }]
[fixed neighborhood

integer from { L | R } integer from { B | T }
integer from { L | R } integer from { B | T }]

corners integer integer integer ... integer integer
asplb float aspub float
class integer
orientations integer ... integer
[pin name string signal string layer integer integer integer]
[equiv name string layer integer integer integer]
[softpin name string signal string]

[layer integer]
[restrict side integer.. integer
[addequiv [restrict side integer ... integer]]
[equiv name string layer integer [restrict side integer ... integer]]
[connect]

.

.

.
[softpin name string signal string]
[pin_group string { permute | nopermute }

string { fixed | nonfixed }
.
.
.

string { fixed | nonfixed }
[restrict side integer...integer]]

[instance string
corners integer integer integer ... integer integer
asplb float aspub float
class integer
orientations integer ... integer
[pin name string signal string layer integer integer integer]
[equiv name string layer integer integer integer]
[softpin name string signal string]

[layer integer]
[restrict side integer.. integer
[addequiv [restrict side integer ... integer]]
[equiv name string layer integer [restrict side integer ...integer]]
[connect]
.
.
.

[softpin name string signal string]
[pin_group string { permute | nopermute }

string { fixed | nonfixed }
.
.
.

string { fixed | nonfixed }
[restrict side integer...integer]]

35

The keyword softcell begins the description of a soft macro cell. The string following the keyword

softcell indicates the cell type. It is furnished for the user's convenience but it will be ignored by

TimberWolf. The string following the keyword name must be the name of the cell being described.

The second construct of the cell format is an optional structure which specifies where a cell is to be

fixed. A cell can be fixed at a single point or constrained to remain within a neighborhood. A point is

specified by its x coordinate relative to either the left or right core boundary and its y coordinate relative to

the top or bottom core edge following the keyword fixed. If the cell is to be constrained in a

neighborhood, the user gives the two points which describe the bounding box of the neighborhood

following the phrase fixed neighborhood. TimberWolf will not allow the center of the cell to leave the

given bounding box. Since TimberWolf builds a topology which depends on cell and routing area, the user

specifies the placements relative to the core edges. L, R, B, T represent the left, right, bottom, and top

edges of the core, respectively.

The next line in the description of a soft cell describes the geometry of the cell. This description is

given in terms of a vertex list for the cell, starting from the leftmost of the lowest vertices and proceeding

in a clockwise manner around the cell. TimberWolf handles cells of any rectilinear shape. The integer

following the keyword corners indicates the number of vertices (or corners) needed to describe the shape of

the cell. Suppose that the value of this integer is represented by numCorners. TimberWolf then expects to

find numCorners pairs of integers following the number of corners. The first pair of integers represents the

x-y coordinates of the leftmost of the lowest vertices, and the last pair of integers represents the x-y

coordinates of the next-leftmost of the lowest vertices. Since TimberWolf generates its own initial

placement topology, including pad placement, the user need not be concerned with the positions of the

cells. However, it is the case that the pair of integers describing the cell vertices are taken absolutely. The

user is permitted to overlap the cells (or stack on top of one another).

NOTE: the order of the corners and numCorners has been reversed from previous versions to make

the language context free. An awk script has been provided to transform from the old format to the new

format To execute the script type:

reverse_corners circuitName <CR>

This will generate a new cell file name circuitName.ncel.

The fourth line in the description of a soft cell indicates the aspect ratio range permitted for the cell.

The keyword asplb is followed by a floating point number which represents the lower bound on the range

of permissible aspect ratios for the cell (in the orientation as implied by the previous line, which supplied

the cell geometry). The keyword aspub is followed by a floating point number which represents the upper

bound on the range of permissible aspect ratios for the cell. If the two floating point numbers have the

same value, then TimberWolf assumes that the aspect ratio must remain as given.

The next required field is the class keyword. It is used to specify exchange classes. Only cells with

the same class number may be exchanged. Normally there are no restrictions and all class fields should be

set to the same non-negative number, preferably zero.

The next required structure is the orientation list. It is described in a manner analogous to the hardcell

format. Again the first specified orientation is the initial orientation, and if nonzero, TimberWolf will

perform the appropriate transformation.

Next, the pins of the soft cell are described. Soft cells may have any number of hardpins (fixed-

location) and/or softpins (variable-location). Fixed-location pins are described in the manner presented in

Section 5.2.2, that is, the descriptions begin with the keyword pin. Fixed pins will retain the same

36

relative position during aspect ratio changes, that is, fixed pins will be scaled appropriately during aspect

ratio changes. Fixed-location pins may have any number of equivalent pins.

The keyword softpin begins a variable-location pin description, and is followed by the keyword

name which, in turn, is followed by a string representing the name of the pin. The keyword signal

appears next and is followed by the signal or net name associated with the pin. While the pin name and the

signal information is mandatory, the user can add optional restrictions to each pin. The layer keyword is

followed by an integer specifying routing level. This number cross-references the layer definitions found in

the RULES section of the circuitName.par file in the order that the layers were defined. The first layer

defined in the RULES section will become layer 1, the second layer will be layer 2, and so forth. If the

layer is unknown or does not matter, use layer 0. In addition, restrictions may be added to the limit the

edges of the cell on which a pin may appear. The keywords restrict side is followed by a list of integers.

Each integer represents a valid cell edge for the pin where the edges must be numbered in a clockwise

fashion starting from the edge represented by the first two pairs of vertices. If the restrict side keywords

are omitted, all cell edges are valid for the softpin.

The optional keyword addequiv tells TimberWolf to add any number of equivalent softpins to

minimize the wirelength. The user may restrict the edges of the cell that the equivalent pins may appear

independent of the restrictions on the softpin itself. TimberWolf will only add equivalent pins if the

wirelength is reduced and TimberWolf will name the equivalent pins.

A second method for adding equivalent pins allows the user to control the number, name, layer, and

placement of the equivalent pins. The keyword equiv begins a softpin equivalent pin definition. The

name of the equivalent pin follows the keyword name. The user can optionally specify the layer

information of the equivalent pin using the layer keyword as described previously; if not supplied,

TimberWolf will decide the layer. In addition, each equivalent pin may be restricted to a set of edges if

desired using the restrict side keywords. The optional keyword connect tells the detail router that the

equivalent pins are not preconnected and must be detail routed within the cell. A softpin may use neither,

either, or both of these methods to describe its equivalent pins. The user may specify any number of

equivalent pins for each softpin.

The optional pin_group construct allows the user to specify the common properties and ordering

rules of a group of softpins. The rules are specified with the properties fixed and permute. Permute is

a property of the pin group, and fixed is a property of the pin group members. If a pin group has the

permute property, then members of this group can exist in two configurations: the given ordering or its

reverse. This option is useful for placing signal buses which require that the signals be placed in ascending

or descending rank. If nopermute is specified, then the ordering rules are decided by the members' fixed

property. If a softpin is fixed, then its rank in the group cannot be changed; otherwise, it can be moved

freely within the group.

Pin grouping is specified using the keyword pin_group to begin the definition of the member pins.

The keyword pin_group is followed by a user specified group name. Pins belonging to this group must

have unique names, and the keyword fixed or nonfixed must follow each softpin name. The pin name

used in the pin group must be declared in the circuitName.cel file before the pin_group declaration. Each

softpin can only belong to one pin group directly. The softpins belonging to the pin group must be listed

in a clockwise order that follows the cell vertices, that is, they will appear bottom to top on a left cell edge,

left to right on a top cell edge, top to bottom on a right cell edge, or right to left on a bottom cell edge.

37

Pin groups can have restrictions just like normal softpins. Furthermore, they can be used in

subsequent pin groups just like ordinary softpins using the pin group name instead of a pinname in the list

of softpins. As with ordinary softpins, pin groups nested within another group must have already been

declared.

An example of a rectangular soft cell is show below:

softcell 3 name tw3
corners 4 0 0 0 400 400 400 400 0
class 0 orientations 0 1 2 3 4 5 6 7
asplb 0.80 aspub 1.20
pin name p1 signal n1 layer 1 0 100
pin name p2 signal n9 layer 2 400 100
equiv name p2_equiv layer 2 400 200
softpin name p3 signal n4
softpin name p4 signal n2 layer 1
softpin name p5 signal n5 restrict side 1 3

addequiv
softpin name p6 signal n7
softpin name p7 signal n8
pin_group pg1 permute
p3 nonfixed
p4 nonfixed
pin_group pg2 nopermute
p6 nonfixed
pg1 nonfixed
p7 nonfixed

In this example, pins p1 and p2 are fixed location pins whereas pins p3 thru p7 are variable location

pins. Pin p5 is an example of a pin where the side is restricted to cell edges 1 and 3, that is, line segments

(0,0) to (0,400) and (400,400) to (400,0). In addition, TimberWolf is instructed to add equivalent pins in

order to minimize the wirelength of net n5. Two pin groups, pg1 and pg2, have been specified in the

example. In the first pin group, pg1, the two member pins p3 and p4 must appear consecutively (either in

forward or reverse order) since the permute property has been specified. The second pin group pg2 specifies

that softpins p6, p7, and pin group pg1 must appear consecutively but may occur in any order.

An optional feature in TimberWolf is the ability to specify multiple instances of the same cell.

TimberWolf will optimize the placement using the instance that will result in the best final cost. The

keyword instance followed by a string describing the instance name begins a new instance of the current

cell. The preceding description is known as the primary instance. All other instances are referred to by the

instance name given by the user. All subsequent instances must have the same pin to signal mapping as

the primary instance. In other words, all instances must both be logically and electrically equivalent but

geometric information may be changed. There is no limit to the number of cell instances.

38

5.2.4. Pad Description Format
This subsection illustrates the pad description format in the input file circuitName.cel. Note that the

description of the pads and pad groups must follow the description of all macro cells. Each entry in

circuitName.cel must be of the following form:

pad string name string
corners integer integer integer ... integer integer
[restrict side { L , T , R , B , LR , TB, LT, RT, LRT, etc. }]
[sidespace { float | float float }]
[pin name string signal string layer integer integer integer]
[equiv name string layer integer integer integer]

padgroup string { permute | nopermute }
string { fixed | nonfixed }

.

.

.
string { fixed | nonfixed }

[restrict side { L , T , R , B , LR , TB, LT, RT, LRT, etc. }]
[sidespace { float | float float }]

The keyword pad begins the description of a pad. The string following the keyword pad is ignored.

The string following the keyword name must be the name of the pad being described.

The second line in the description of a pad describes the geometry of the pad. The description of the

pad geometry is given in terms of a vertex list, starting from the leftmost of the lowest vertices and

proceeding in a clockwise manner around the pad. However, all pads must be given as if they were to be

placed on the bottom side of the chip, that is with the bond pad at the bottom and the ports to the core at

the top. TimberWolf will perform the necessary rotations in order to achieve the correct orientation for each

side. Since TimberWolf places the pads relative to the core area, the absolute coordinates of the vertices are,

in fact, meaningless. Hence, it is recommended that the user let the lower left corner of every pad be

coincident with the origin.

bond pad

All I/O pads should be
specified in this

orientation
regardless of side.

TimberWolf will rotate
the cell appropriately.

pin A pin B

39

The optional third line in the pad description format begins with the keyword string restrict side

and is followed by a string containing the characters:

L , T , R , or B

If the restrict side option is given for the pad, TimberWolf is constrained to place the pad on the given

side or sides of the chip. L, T, R, and B stand for the left, top, right, or bottom sides of the chip,

respectively. More than one side may be specified. For example, restrict side LR allows the program

to place the pad on either the left or right side of the chip where its final position is determined by the side

which minimizes wirelength and satisfies pad area constraints. If no side restriction is present, TimberWolf

is free to place the pad on the side which minimizes wirelength for that pad and satisfies all other

constraints.

The optional keyword sidespace followed by a floating point number allows the user to place pads at

a particular relative position. For left or right side pads (restrict side L or R), the floating point number

represents a decimal fraction which specifies the fraction of the bottom-to-top span of the core of the chip to

which the center of the pad is to be placed. For example, if the vertical span of the chip is 10000 microns,

and if the sidespace floating point number is 0.10 for a pad to be placed on the left side, then the pad will

have its y-center placed at 1000 microns from the bottom edge of the core. For bottom or top side pads

(restrict side B or T), the floating point number represents a decimal fraction which specifies the fraction

of the left-to-right span of the core to which the center of the pad is to be placed. For example, if the

horizontal span of the core is 10000 microns, and if the sidespace floating point number is 0.70 for a pad to

be placed on the top side, then the pad will have its x-center placed at 7000 microns from the left edge of

the core.

Note that the sidespace keyword can be used to force an order on a given side. If the sidespace

keyword is not present for a pad, by default, TimberWolf will place the pad so as to minimize wirelength.

In summary, to constrain a pad to a side or sides of the chip, use the restrict side option and to constrain

a pad to a particular relative position, using the sidespace option. The user may also use padgroups to

specify an ordering. See below for details.

The optional keyword sidespace followed by two floating point numbers allows the user to set a

valid window for pad placement. The first number represents the lower bound of the window and the second

floating point number represents the upper bound. Again, each floating point number represents a decimal

fraction which specifies the fraction of the left-to-right (bottom-to-top) span of the core to which the center

of the pad is to be placed. It should be clear that the first form of the sidespace parameter is a compact form

for the case when the lower bound equals the upper bound.

As an example, consider the following 4 pads. The first pad is unconstrained and may be placed on

any side. The program will attempt to place the pad in such a way that the wirelength to the core is

minimized. This is useful for subchips where the optimal I/O point is unknown. The second pad is

constrained to be placed either on the top or bottom side of the core whereas the third and fourth pads must

be placed on the left side of the core. In all cases, the pads are unordered on that side.

40

pad 11 name twpad1
corners 4 0 0 0 200 200 200 200 0
pin name p1 signal layer 1 n1 200 100

pad 12 name twpad2
corners 4 0 0 0 200 200 200 200 0
restrict side TB
pin name p2 signal layer 1 n2 200 100

pad 13 name twpad3
corners 4 0 0 0 200 200 200 200 0
restrict side L
pin name p3 signal layer 1 n3 200 100

pad 14 name twpad4
corners 4 0 0 0 200 200 200 200 0
restrict side L
pin name p3 signal layer 1 n3 200 100

The example below shows the same four pads as in the example above, however, in this case the user

has requested that the pads appear at specific relative positions. Note that pads twpad3 and twpad4 are

ordered bottom to top on the left side of the core. Also note that twpad2 may be placed on either the T, B,

or R sides in a window starting at 30% and ending at 50% of the side's span.

pad 11 name twpad1
corners 4 0 0 0 200 200 200 200 0
pin name p1 signal n1 layer 1 200 100
sidespace 0.5

pad 12 name twpad2
corners 4 0 0 0 200 200 200 200 0
restrict side TBR
pin name p2 signal n2 layer 1 200 100
sidespace 0.3 0.5

pad 13 name twpad3
corners 4 0 0 0 200 200 200 200 0
restrict side L
pin name p3 signal n3 layer 1 200 100
sidespace 0.8

pad 14 name twpad4
corners 4 0 0 0 200 200 200 200 0
restrict side L
pin name p3 signal n3 layer 1 200 100
sidespace 0.9

Another way to order a group of pads is with the padgroup construct which allows the user to

specify the common properties and ordering rules of a group of I/O pads. The rules are specified with the

properties fixed and permute. Permute is a property of pad groups, and fixed is a property of the pad

group members. If a pad group has the permute property, then members of this group can exist in two

configurations: the given ordering or its reverse. This option is useful for placing I/O buses which require

that the signals be placed in ascending or descending rank. If nopermute is specified, then the ordering

41

rules are decided by the members' fixed property. If a pad is fixed, then its rank in the group cannot be

changed; otherwise, it can be moved freely within the group.

Pad grouping is specified using the keyword padgroup to begin the definition of the member pads.

The keyword padgroup is followed by a user specified group name. Pads belonging to this group must

have unique names, and the keyword fixed or nonfixed must follow each pad name. The pad name used

in the pad group must be declared in the circuitName.cel file before the padgroup declaration. Each pad can

only belong to one pad group directly. The pads belonging to the pad group must be listed in order: from

left to right for T, B, and TB side restrictions, and bottom to top for L, R, and LR side restrictions.

By default, members of pad groups are placed contiguously. In other words, no nonmember pads can

be placed between the member pads. To change the setting to noncontiguous, the keyword

contiguous_pad_groups must be turned off in the circuitName.par file. In this case, nonmember pads

will be placed between the pads.

Pad groups can have restrictions just like normal pads. Furthermore, they can be used in subsequent

pads groups just like ordinary pads using the padgroupname instead of a padname in the list of pads. As

with ordinary pads, pad groups nested within another group must have already been declared.

Below is an example of a pad group consisting of two ordinary pads and a previously defined padgroup

which are to be placed in either increasing or decreasing order:

padgroup tw_group2 permute
twpad1 nonfixed
tw_group1 nonfixed
twpad2 nonfixed

42

5 . 3 . THE FORMAT OF THE CIRCUITNAME.NET FILE

The optional file circuitName.net contains the critical-net timing data. The format for timing driven

placement is as follows:

path string...string : integer integer integer

The net or list of nets following the keyword path describe the net or nets in this path. The nets are

described using the same name (string) given in the circuitName.cel file. A blank space is required before

and after the colon. The first integer after the colon is the lower bound constraint on the path length. If the

path given is a single net, the pathlength is the wirelength of that net as measured by the half perimeter

bounding box metric. The pathlength for multiple nets is the sum of the individual net wirelengths. The

second integer is the upper bound on the pathlength. The third integer is the priority of the net and

currently takes on the values 0 and 1. If the value of priority is 1, then the path is in the list of critical

paths and TimberWolf will to place the cells in such a way that the pathlength is greater or equal to the

lower bound and less than or equal to the upper bound. If the priority is 0, then TimberWolf will not use

this path in the timing constraint but will print out the pathlength in the circuitName.pth file (as it also

will for a priority of 1).

The user may issue additional directives regarding particular nets. The following format is used:

net string [ignore] [do_not_global_route]

The keyword net is followed by a string which must be the name of a net specified in

circuitName.cel. The optional keyword ignore is used to instruct TimberWolf to ignore this net during the

placement stage. However, this net will be globally routed. Nets which connect to virtually every cell, for

example, clock and power/ground lines, have no influence on placement quality. However, because they

connect to almost every cell, each incremental placement change in the simulated annealing algorithm

requires the reevaluation of the spans of these nets. The consequence is a dramatic increase in the run time

of the algorithm. The intent of this keyword is to reduce the placement time without sacrificing any

placement quality.

The optional keyword do_not_global_route is used to instruct TimberWolf to take this net into

account during placement only, that is, let it influence the placement but do not global route the net. This

is typically used for nets which will be routed by some special means.

43

6 . TIMBERWOLF OUTPUT FILES

6.1. MESSAGE FILES

All error messages are normally directed to the screen. In addition, the other messages may also be

written to one of the TimberWolf output files depending on the program that is being executed. The

following programs have output files:

Mickey circuitName.gout

SGGR circuitName.sgout

TimberWolfMC circuitName.mout

TimberWolfSC circuitName.out

Tomus circuitName.pout

Each file has numerous statistical data concerning the executed program. Statistical data are also

printed in these files following each iteration of the simulated annealing programs, TimberWolfMC,

TimberWolfSC, and Tomus. Much, although not all, of the information available in these files is self

explanatory. The user should become familiar with its contents.

6.2. PLACEMENT OUTPUT FILES

There are three files which contain placement information: circuitName.mdat, circuitName.pl1, and

circuitName.pl2. The first file, circuitName.mdat, will exist if hard or soft macro cells exist in the input

file circuitName.cel. This file has the exact same format as the circuitName.cel file except all hard and soft

macro cells are described in their final positions. In addition, all final softpin and equivalent pin locations

are output. Notice that only the chosen instance (if more than one instance exists) will be output. For

convenience, the current orientation of the macro is described by the integer following the keyword orient.

It is important to realize that the vertex list output has already been translated and/or rotated according to the

current orientation.

If row-based cells exist, TimberWolf will create the circuitName.pl1 and circuitName.pl2 files. The

file circuitName.pl1 contains the placement information for each cell, pad, and bounding box of any macro

block. Meanwhile, the file circuitName.pl2 contains the placement information for each row, and for the

pads and macro blocks. Note that circuitName.pl2 does not contain cell placement information. The

intention is this file is to aid the user in determining the proper configuration of the circuit, that is, the

number of rows, the macro block placement, and the pad placement.

The format for each entry in these two files is the same, and is as shown below:

string integer integer integer integer integer integer

For circuitName.pl1, the string is the name of a cell, macro block, or pad. For circuitName.pl2, the

string is the name of a macro block or pad, or the row number.

The pair of integers following the string represent the x,y–coordinates of the lower left corner of the

cell, macro block, pad, or row. The third and fourth integers represent the x,y-coordinates of the upper right

corner of the cell, macro block, pad, or row.

The fifth integer following the string represents the orientation of the cell, macro block, or pad. This

field is set to 0 for rows. All cells were presumed to have been entered in orientation 0 in circuitName.cel.

The orientation number given, if different from 0, represents a change in a cell orientation. The orientation

numbering scheme was presented above during the description of the contents of the file circuitName.cel.

However, due to its immediate relevance here, it will be repeated.

44

The TimberWolf orientation numbering scheme is as follows: Orientation 0 is that description of the

geometry appearing for cells, pads and macro blocks. The other 7 possible orientations are numbered as

follows: (1) Orientation 1 represents a mirror of the cell's y, that is, a mirror about the x-axis with respect

to orientation 0. (2) Orientation 2 represents a mirror of the cell's x-coordinates, that is, a mirror about the

y-axis with respect to orientation 0. (3) Orientation 3 represents a 180 degree rotation of the cell's

coordinates with respect to orientation 0. (4) Orientation 4 represents a combination of a mirror of the cell's

x-coordinates followed by a 90 degree rotation of the cell with respect to orientation 0. (5) Orientation 5

represents a combination of a mirror of the cell's x-coordinates followed by a –90 degree rotation of the cell

with respect to orientation 0. (6) Orientation 6 represents a 90 degree rotation of the cell with respect to

orientation 0. (7) Orientation 7 represents a –90 degree rotation of the cell with respect to orientation 0.

 ˚

0 1 2 3

4 5 6 7

The sixth integer following the string represents the row number to which a cell belongs. This field is

set to zero for all macro blocks. For pads on the left side of the chip, the field is set to -1. For pads on the

right, bottom, and top sides of the chip, it is set to -2, -3, and -4 respectively.

The first entries in the file circuitName.pl1 are the cell placement information. These entries are sorted

by row number. That is, the cells for row number 1 appear first, then the cells for row number 2 appear,

and so on. Furthermore, the cells for each row are sorted in left to right order. Following the cell placement

information, the pad and macro block bounding box placement information appears. If a macro block is an

arbitrary rectilinear shaped cell, the circuitName.mdat file should be analyzed for the final placement; the

circuitName.pl1 and circuitName.pl2 only give the bounding box of the macro.

The first entries in the file circuitName.pl2 are the row placement information. These entries are sorted

by row number. Following the row placement information, the pad and macro block placement information

appears.

6.3. GLOBAL ROUTING OUTPUT FILES

The global routing information is presented in an output file named circuitName.pin. Each line in the

circuitName.pin file consists of 9 fields of information concerning an active pin. An active pin is a pin

which will participate in the minimum area global route of the circuit in the following format:

string integer string string integer integer integer integer integer

Pins which are inactive, that is, pins which are not used in the minimum area global route, are not

included in this file.

45

The fields for each active pin are now presented. The first field represents the name of the net attached

to the pin. The second field is an integer which represents the group number for the pin. The group

numbers are globally unique. That is, each net has its constituent pins broken down into groups such that

the pins with a common group number are to be interconnected. Two pins belonging to the same net but

with different group numbers are not to be interconnected. Hence, a channel or detailed router is not to be

passed the net name for a pin, but rather the group number in order to achieve the minimum area layout.

For clarity, the user may wish to pass both the net name and the group number (in the fashion:

netName_groupNumber) so that the label for a pin produced on a plot contains the net name. In any event,

the group number must be passed to the channel or detailed router in order to achieve the routing density

reported by TimberWolfSC.

The third field is a string representing the name of the cell to which the pins belongs. The fourth field

is a string which represents the name of the pin. The fifth and sixth field are a pair of integers representing

the x and y coordinates of the location of the pin.

The seventh field represents the channel number to which the pin belongs. Horizontal core region

channels are numbered (starting at 1) from the channel below the first row. The left side I/O channel (a

vertical channel) is designated as channel number –1. The right side I/O channel (also a vertical channel) is

designated as channel number –2. The bottom I/O channel (horizontal channel below the first core channel)

is designated as channel number -3 and the top I/O channel (horizontal channel above topmost core

channel). The first core region channel and the bottom I/O channel may describe the same routing region.

However, in general, the bottom I/O channel is wider than first core channel and therefore a distinction can

be made between connections between pins on row-based cells and pins on I/O pads. A similar situation

arises in the channel above the last row.

The eighth field is a location field. It is an integer which takes on one of four possible values (-2, -1,

1, 2). A net which must leave a horizontal channel and enter a vertical channel does so by means of a

pseudo pin at either the left end or right end of a horizontal channel. A pseudo pin at the left end of a

horizontal channel has this location field set to -2 and a pseudo pin at the right end of a horizontal channel

has this location field set to 2. The name of a pseudo pin is: PSEUDO_PIN and it is said to lie on a cell

named: PSEUDO_CELL. Each left- or right-side pad pin actually appears three times! Once as a pseudo pin

for a horizontal channel, once as a pseudo pin on the bottom (designated by -1) of a side channel, and once

as a real pin on the top (designated by 1) of the same side channel.

If a pin is located at the top of a channel this field is set to 1. If a pin is located at the bottom of a

channel this field is set to –1.

Pins on the top side pads have location 1 for the channel which has a number equal to the number of

rows plus one. Pins on the bottom side pads have location –1 of channel number 1.

The ninth and final field is an integer indicating the layer assigned to this pin.

In summary, the nine fields for an active pin are:

46

1. Name of net to which the pin belongs.
2. Group number of the pin.
3. Cell name to which the pin belongs.
4. The name of the pin.
5. The x-coordinate of the pin location.
6. The y-coordinate of the pin location.
7. The channel to which the pin belongs.
8. Whether the pin is at the top (1), bottom (–1), left end (–2), or right end (2) of the channel.
9. Layer.

47

7 . EXECUTING TIMBERWOLF

The TimberWolf system may be executed by typing TimberWolf on the command line assuming

that the TimberWolf bin directory is included in your command search path Again, a convenience cshell

script for setting the search path may be found in the TimberWolf root directory. Just execute 'source

.twrc' in the cshell to set the environment variables TWDIR and DATADIR and to include the

TimberWolf bin directory in your search path. TimberWolf has the following syntax:

TimberWolf [-gpndw] circuitName [windowId] [flowDirectory]

The first optional argument to TimberWolf is the option list which is a string of letters in the set

{gpndw} that must begin with a hyphen. If the letter g occurs in the string, the TimberWolf control

program twflow is set to its general mode; otherwise, it is set to the TimberWolf mode. See twflow for

more details. The options p, n, and w pertain to TimberWolf graphics. If p occurs in the option string,

TimberWolf enter a graphics wait state to allow the user to enter commands into twflow. By default,

TimberWolf immediately begins execution of the program sequence. Again, see Twflow for the list of

functions available. The option n switches off the graphics. The default is for TimberWolf to open a

graphics window. The w argument tells the TimberWolf graphics system to inherit a window, namely the

window specified by the X windowId. This option is never necessary; it is only used internally by the

TimberWolf system. The next argument circuitName is required. It is the circuit to be processed.

Following windowId is an optional argument which specifies the flow directory to be used by TimberWolf.

The default flow directory is configurable, currently it is a link in the ./TimberWolf/bin/flow

directory. To look at the default flow directory, just type show_flows <CR>. The available flow

directories and its default will be output to the screen. The current flows supported are:

flow.noroute

flow.part

To change the default flow type change_flow flowDirectory <CR> where flowDirectory is one of

the supported flows. The TimberWolf command line argument flowDirectory allows a design to be run

using an alternate flow without having to change the system default.

48

8 . TUTORIAL #1 - MACRO CELL DESIGN

GOAL: PLACE AND GLOBAL ROUTE A SMALL MACRO CELL DESIGN.

1) Start X server if necessary.

2) Change directory to TimberWolf root directory.

3) Run the TimberWolf initialization script:

source .twrc <CR>

You should see something similar to:

Initializing the TimberWolf environment variables...

TWDIR has been set to /twolf6/bills/TimberWolf

DATADIR has been set to /twolf6/bills/TimberWolf/DATA

DISPLAY has been set to :0

The search path now includes /twolf6/bills/TimberWolf/bin

4) You may wish to set the EDITOR environment variable if you want to use an editor other than vi. For

example, you may wish to edit files using the emacs editor. Assuming emacs is in your search path, you

would type:

setenv EDITOR emacs <CR>

5) Change directory to macro cell test case by typing:

cd test/macro <CR>

6) If you list the contents of the directory you should see the following files:

ls <CR>

macro.cel macro.par.sav

7) Now type TimberWolf to see its options and the available flow directories:

TimberWolf <CR>

Incorrect syntax. Correct syntax:
TimberWolf [-gpndw] designName [windowId] [flowdirectory]

whose options are one or more of the following:
g - general mode - does not use TimberWolf system
 information. Default is TimberWolf mode
p - pick mode - [graphics only] wait for user
 upon entering the program
n - no graphics - the default is to open the
 display and output graphics to an Xwindow
d - prints debug info and performs extensive
 error checking
w - parasite mode will inherit a window. Requires
 a valid windowId

Available installed flow directories are:
flow->flow.noroute
flow.noroute
flow.part
The current default flow directory is denoted by the arrow.
 terminated abnormally with 1 error[s] and 0 warning[s]

8) The flow directory should be set to flow.noroute. If not type:

change_flow flow.noroute <CR>

9) Now execute TimberWolf on the macro design by typing:

TimberWolf macro <CR>

49

10) You should see TimberWolf first create a new window. In this window, you should see graphically that

the syntax program is being executed on the macro design. This program parses the input files and

determines the design style, in this case the macro design style. You will next see a flow diagram for the

macro design style. The first step in the flow is the shell script edit_mcfiles It will open an edit window

displaying the macro.par or parameter file using the editor defined in the environment variable EDITOR. Vi

is the default editor. You may browse through the file but don't change anything. When you are done

looking at the file, exit the file. In vi type:

:q <CR>

or in emacs type:

<Control-x><Control-c>

The programs will be executed automatically. All steps will be performed on the screen: wire estimation,

placement, compaction, and global routing. Do not interrupt the program; let it progress to completion

automatically.

11) When the program terminates, execute TimberWolf again by typing:

TimberWolf macro <CR>

Notice that TimberWolf automatically traverses the flow graph and exits. This is because all output files

are up to date. If we wish to rerun TimberWolf, you must update the timestamp on the macro.cel file by

typing:

touch macro.cel <CR>

12) Now again rerun TimberWolf on the design as before. Notice that now TimberWolfMC is executed

since its output files are out of date but edit_mcfiles is not run since the parameter file has not been

touched.

13) While TimberWolfMC is running, put the mouse in the menu window and click it. This will interrupt

TimberWolfMC and put it in a graphics wait state awaiting user input. The menu window has the

following look:

Control Edit Draw Parameters

Edit Cell

Fix Cell

Fix Cell but Rot.

Move Cell

Cell Neighborhood

Group Cells

Cancel

Tell Point

Continue Pgm

Dump Graphics

Close Graphics

Auto Redraw

Colors

Graphics Update

Fullview

Redraw

Cancel

Translate

Zoom

Draw Bins

Draw Wiring Est

Draw Neighborhood

Draw Nets

Draw Labels

Draw Pins

Cancel

Draw Border

Draw Globe Areas

Draw Single Net

Change Aspect Ratio

Cancel

Graphics Wait

Menu Window

14) We have unrolled the menus so that you can look at all the entries at once. Let's first look at the menu

items under the CONTROL heading. The menu entries under the CONTROL heading are common to all

graphics programs. The first entry is AUTO REDRAW which allows one to delay the redraw of the main

50

drawing window. Turn AUTO REDRAW OFF. Click on any of the menu items under DRAW and you

will see that the screen will not be redrawn. This is useful if you have a large design and you want to set

all of the DRAW settings at once. Now turn AUTO REDRAW ON so that the screen will redraw after a

request from the user. If you select a menu accidentally, just hit CANCEL to exit that menu. Most of the

items under this heading are self explanatory. Try the other functions. If you need more information on an

item, turn to the graphics interface section of TimberWolfMC.

15) Now let's look at TimberWolfMC specific functions. Most of these are found under the EDIT menu

heading. The EDIT CELL menu allows you to select a cell and edit its attributes, such as center of the cell,

and cell orientation through a pop-up dialog box. The MOVE CELL function allows you to pick a cell and

place it anywhere in the core region. The command itself will prompt you with directions. Another useful

set of functions are the fix cell operations: FIX CELL, FIX CELL BUT ROTATE, and CELL

NEIGHBORHOOD. FIX CELL does just that; it doesn't allow a selected cell to move relative to the core

edge. The absolute position may NOT be specified since at this time we only have an estimate of the

routing space required between cells. The function FIX CELL BUT ROTATE is similar except that in

addition the cell is allowed to rotate around its center. The final operation CELL NEIGHBORHOOD

allows a cell to move within a bounding box or neighborhood. The user picks or enters the two points

(lower left and upper right corners) of the neighborhood. During annealing the cell's center will be

constrained to lie within the bounds of the neighborhood. One last function is the CHANGE ASPECT

RATIO function under the PARAMETER heading which modifies the aspect ratio of the core area. Aspect

ratio is height divided by width. For example, an aspect ratio of 0.5 would be short and squatty.

Experiment with various constraints. Again, if you need more information on an item, turn to the graphics

interface section of TimberWolfMC.

16) When done exploring, use the CONTINUE PGM function under the CONTROL menu heading to

continue execution of the program. At any time, the program can be interrupted by clicking on the top

menu window. Allow TimberWolfMC to finish. This completes our first tutorial.

51

9 . TUTORIAL #2 - STANDARD CELL DESIGN

GOAL: PLACE AND GLOBAL ROUTE A SMALL STANDARD CELL DESIGN USING TIMING CONSTRAINTS.

1) Initialize TimberWolf and the Xserver if necessary. (Refer to the first tutorial for the proper procedure).

2) Change directory to the macro cell test case by typing:

cd test/stdcell <CR>

3) If you list the contents of the directory you should see the following files:

ls <CR>

stdcell.cel stdcell.par.sav stdcell.net

4) In this tutorial, we will investigate timing driven placement. The timing constraints are given in the

circuitName.net file. Let's look at the format of this file. Using the editor of your choice, type either:

vi stdcell.net <CR>

or

emacs stdcell.net <CR>

In this file you will see the path constraints; in this case, one constraint per net is specified. For example:

path B7 : 50 150 0

In this case, there is only one net in the critical path, B7. This stdcell circuit implements an eight bit

counter. For maximum clock frequency, we would like to equalize all the net delays due to parasitics as

much as possible. To do this we set a lower and upper bound on the length of each net, 50 and 150,

respectively. The zero at the end of the definition tells TimberWolf to ignore this path as a constraint;

instead, it will only measure the path. We will first run the design without the timing constraints. Exit

the editor and run TimberWolf:

:q <CR> (vi editor)

or

<Control-x><Control-c> (emacs editor)

then

TimberWolf stdcell <CR>

5) Again the flow will run automatically. It will open the stdcell.par file to allow you to edit the

parameters for the design. Notice that the number of standard cell rows have been specified:

GENR*numrows : 3

In addition, an estimate of the additional feedthroughs needed to route the design has been furnished:

GENR*feed_percentage : 3.0

When finished browsing, exit the editor.

6) TimberWolf will flow automatically into the Mincut program which prepares the design for

floorplanning. Next, TimberWolf will enter the floorplanner, TimberWolfMC. Since no macro exists in

this design, the Genrows program will be called immediately. You will see the graphical output of

Genrows on the screen. The core region of the design is the green area. The blue rectangles are the standard

cell rows and the yellow regions are extra row areas to accommodate feedthroughs. In the message window,

you will see the following message:

If you wish to modify the rows, you have 10 secs.. to click on the top menu.

7) Click on the top menu by putting the mouse pointer in the window which reads:

CONTROL EDIT MERGE DRAW PARAMETERS

52

8) Genrows will respond by replying:

Please reconfigure the rows.

Genrows is waiting for your response...

9) Here we will look at some of the features of the Genrows row topology program. We have unrolled the

Genrows menus so that you can view all the menu entries at once.

Control Merge

Tell Point

Continue Pgm

Dump Graphics

Close Graphics
Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Divide Tile Left_Right

Merge Right

Merge Upward

Merge Left

Reset Tiles

Cancel

Divide_Tile_Up_Down
Limit Merges

Merge Downward

Draw
Draw Labels

Cancel

Draw Macros

Draw Rows
Draw Tiles

Parameters
Feed Percentage

Cancel

Min. Row Length
Row Separation

Set Spacing

Colors

Edit

Align Macro in Y

Align Rows
Edit Macro

Keep Short Row

Align Macro in X

Edit Tile

Modify Core Area

Move Macro

Numrows

Redo

Restore State

Save State

Cancel

Undo

Edit Row

10) We will experiment with different configurations but before we do, we will save the current state. To

do this, click on the EDIT heading and pick the SAVE STATE menu entry. Genrows will prompt:

Enter file name for save file:

Give a name for this state. For example,

stdcell <CR>

Any number of save states are possible; just give each state a unique name.

11) Now let's explore some off Genrow's features relevent to standard cell row generation. Suppose we

want four stdcell rows. We would click in the EDIT heading. When the menu unrolls, pick the entry

NUMROWS. Genrows will prompt:

Enter the number of rows:

Make sure the mouse pointer is in the TimberWolf window and type:

4 <CR>

Genrows will reconfigure the design for four rows.

12) Suppose you wish to change the separation between the stdcell rows. Click the PARAMETERS

heading and pick the ROW SEPARATION entry.

Genrows will prompt:

Enter row separation [1.0 nominal]:

The row separation is defined relative to the average standard cell height; the separation between adjacent

rows will be the row separation multiplied by the average standard cell height. Experiment with different

row separations.

53

13) Next change the feed percentage by clicking on the PARAMETERS heading and selecting the entry

FEED PERCENTAGE. Genrows will prompt:

Enter feed ratio in percentage [0-100]:

Try 10% additional feedthroughs by entering:

10 <CR>

Try experimenting with various feed percentages.

14) Now set the design back to its original state by clicking the RESTORE STATE command under the

EDIT heading. Genrows will prompt:

Enter restore file name:

Type the state:

stdcell <CR>

You will see that Genrows returns the design to its saved configuration. Now let us leave the Genrows

program by selecting the CONTINUE PGM command.

15) TimberWolf will automatically enter the standard cell placement program, TimberWolfSC. While

TimberWolfSC is running, put the mouse in the menu window and click it. This will interrupt

TimberWolfSC and put it in a graphics wait state awaiting user input. The menu window has the

following look:

Control Draw
Draw Blocks

Draw Single Net

Draw Single Cell Moves

Draw Pins

Cancel

Draw Stdcells
Draw Labels

Draw Nets

Tell Point

Continue Pgm

Dump Graphics

Close Graphics

Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Graphics Update

Colors

By default, TimberWolfSC will draw the state of the placement after each update to the cost function

parameter (about 160 times in all). If the DRAW SINGLE CELL MOVES command is chosen under the

DRAW heading, TimberWolfSC will show the annealing process in action. Resume the execution of the

run by entering the CONTINUE PGM command. You will notice that the standard cells become different

colors: red denotes a highly active hot cell whose position changes frequently; orange denotes a warm cell

with a lower activity; blue represents a cold cell whose position has remained relatively constant; and green

symbolizes a frigid cell which has not moved from its initial position. This mode is intended for

instructional purposes. Allow TimberWolfSC to complete.

16) Now let's analyze the timing constraints by using the analyze_nets program:

analyze_nets stdcell <CR>

On the screen, you will see a histogram of the individual path lengths. Notice that the spectrum of net

lengths has a wide spread. Analyze_nets graphically depicts the information present in the circuitName.pth

54

file. You may wish to use the editor to browse the stdcell.pth file. Again, select the CONTINUE

PGM command to exit this program.

17) In building this circuit, we want to equalize the net lengths as much as possible. We will use the

utility net_util to build a new circuitName.net file. To do this type:

net_util stdcell 50 150 1 < C R >

This will create a new file stdcell.net which contains path constraints for each net in the design. Each

path constraint will have a lower bound of 50, and an upper bound of 150. In addition, all path constraints

will be activated. You may want to open an editor on the file stdcell.net to see the result.

18) Now we will rerun TimberWolf on the design. If we type:

TimberWolf stdcell <CR>

TimberWolf knows you have modified the circuitName.net file and reruns TimberWolfSC. Let

TimberWolf run to completion.

19) Now rerun the net analysis program:

analyze_nets stdcell <CR>

You should see that the net lengths cluster around 100. There are two exceptions around 300. These

are the clock (MCLOCK) and reset (MCLEAR) lines which connect to every flip flop in the design

including the I/O pads. For this reason, the constraints cannot be achieved. Nets which connect to

virtually every cell, for example, clock and power/ground lines, have no influence on placement quality.

However, because they connect to almost every cell, each incremental placement change in the simulated

annealing algorithm requires the reevaluation of the spans of these nets. The consequence is a dramatic

increase in the run time of the algorithm. Through the use of the ignore keyword in the circuitName.net

file we can ignore the evaluation of these nets during placement. Edit the stdcell.net file. You will need

to either delete or comment out the two paths. Below is a legal comment in the circuitName.net file:

/*

path MCLEAR : 50 150 1

path MCLOCK : 50 150 1

*/

In addition, you will need to add the following two lines:

net MCLEAR ignore

net MCLOCK ignore

Save the file.

20) We could rerun TimberWolf and let TimberWolf figure out which programs need to be run (in this case,

TimberWolfSC). However, let's explore how to force TimberWolf to execute a single program. We will

use the pick mode in TimberWolf. Type:

TimberWolf -p stdcell <CR>

TimberWolf will determine the design type, draw the proper flow graph, and then wait for the user to enter a

command. Pick the PICK PGM command under the FLOW menu. TimberWolf will prompt:

Pick program by clicking any mouse button at center of object

Pick TimberWolfSC with the mouse pointer. The TimberWolfSC program object will turn red. Now

select the EXECUTE PGM menu under the FLOW heading. TimberWolfSC will begin execution. Once

TimberWolfSC loads, interrupt the program by clicking in the menu window. Now select GRAPHICS

UPDATE OFF under the CONTROL heading. TimberWolfSC will no longer update the screen after each

cost function parameter adjustment. It will, however, allow the user to interrupt the program again and

54

file. You may wish to use the editor to browse the stdcell.pth file. Again, select the CONTINUE

PGM command to exit this program.

17) In building this circuit, we want to equalize the net lengths as much as possible. We will use the

utility net_util to build a new circuitName.net file. To do this type:

net_util stdcell 50 150 1 < C R >

This will create a new file stdcell.net which contains path constraints for each net in the design. Each

path constraint will have a lower bound of 50, and an upper bound of 150. In addition, all path constraints

will be activated. You may want to open an editor on the file stdcell.net to see the result.

18) Now we will rerun TimberWolf on the design. If we type:

TimberWolf stdcell <CR>

TimberWolf knows you have modified the circuitName.net file and reruns TimberWolfSC. Let

TimberWolf run to completion.

19) Now rerun the net analysis program:

analyze_nets stdcell <CR>

You should see that the net lengths cluster around 100. There are two exceptions around 300. These

are the clock (MCLOCK) and reset (MCLEAR) lines which connect to every flip flop in the design

including the I/O pads. For this reason, the constraints cannot be achieved. Nets which connect to

virtually every cell, for example, clock and power/ground lines, have no influence on placement quality.

However, because they connect to almost every cell, each incremental placement change in the simulated

annealing algorithm requires the reevaluation of the spans of these nets. The consequence is a dramatic

increase in the run time of the algorithm. Through the use of the ignore keyword in the circuitName.net

file we can ignore the evaluation of these nets during placement. Edit the stdcell.net file. You will need

to either delete or comment out the two paths. Below is a legal comment in the circuitName.net file:

/*

path MCLEAR : 50 150 1

path MCLOCK : 50 150 1

*/

In addition, you will need to add the following two lines:

net MCLEAR ignore

net MCLOCK ignore

Save the file.

20) We could rerun TimberWolf and let TimberWolf figure out which programs need to be run (in this case,

TimberWolfSC). However, let's explore how to force TimberWolf to execute a single program. We will

use the pick mode in TimberWolf. Type:

TimberWolf -p stdcell <CR>

TimberWolf will determine the design type, draw the proper flow graph, and then wait for the user to enter a

command. Pick the PICK PGM command under the FLOW menu. TimberWolf will prompt:

Pick program by clicking any mouse button at center of object

Pick TimberWolfSC with the mouse pointer. The TimberWolfSC program object will turn red. Now

select the EXECUTE PGM menu under the FLOW heading. TimberWolfSC will begin execution. Once

TimberWolfSC loads, interrupt the program by clicking in the menu window. Now select GRAPHICS

UPDATE OFF under the CONTROL heading. TimberWolfSC will no longer update the screen after each

cost function parameter adjustment. It will, however, allow the user to interrupt the program again and

55

enter a graphics wait state. If the user wishes to turn the graphics off completely for the remainder of the

execution, select the CLOSE GRAPHICS menu under the CONTROL heading. The graphics will be

disabled until the return to the master control program, TimberWolf (Twflow). Interrupt the program once

again. This time select CLOSE GRAPHICS and allow TimberWolfSC to finish.

21) When control returns to TimberWolf, exit the program by selecting the EXIT PROGRAM menu under

the CONTROL heading.

22) Now return to the analysis program by typing:

analyze_nets stdcell <CR>

You should see that the net lengths now all cluster around 100. Our design now has equalized net lengths.

You may wish to browse the stdcell.pth file for more details. This concludes the second tutorial.

56

1 0 . Tutorial #3 - Mixed Macro/Standard Cell Design

GOAL: PLACE AND GLOBAL ROUTE A SMALL MIXED MACRO/STANDARD CELL DESIGN.

1) Initialize TimberWolf and the Xserver if necessary. (Refer to the first tutorial for the proper procedure).

2) Change directory to the mixed cell test case by typing:

cd test/mixed <CR>

3) If you list the contents of the directory you should see the following files:

ls <CR>

mixed.cel mixed.par.sav

4) In this tutorial, we will learn more of the capabilites of Genrows. To start, run TimberWolf:

TimberWolf mixed <CR>

5) Again, the flow will be managed automatically. TimberWolf will open the mixed.par file to allow you

to edit the parameters for the design. When finished browsing, exit the file.

6) TimberWolf will flow automatically into the Mincut program which prepares the design for

floorplanning. The Mincut program will partition the standard cells into a cell cluster the size of an average

macro cell in the design. These cluster cells become soft macro cells in the floorplanning problem; that is,

their aspect ratios are varied and the pin locations are optimized.

7) Next, TimberWolf will enter the floorplanner, TimberWolfMC. In order to distinguish the cluster macro

cells from the user's macro cells, interrupt TimberWolf by clicking on the top menu. Now select the

DRAW WIRING EST menu from under the DRAW heading. You will see an orange border added to every

user's macro cell. This wiring estimation is based on the macro's position, and pin density. The cluster

cells have no border since their wiring area has already been factored into their area. Allow the program to

continue by selecting CONTINUE PROGRAM under the CONTROL heading.

C:2

C:3

C:1

Figure 10.1

8) After floorplanning, the relative positions of the macros have been determined and TimberWolf will enter

the Genrows program in order to configure the standard cell row topology. Genrows will determine a

57

topology based on the row separation and feed percentage, and display it on the screen. It will then wait for

the user to enter a graphics command. The core region of the design is the green area. The blue rectangles

are the standard cell rows, the yellow regions are extra row areas to accommodate feedthroughs, and the

orange regions are macro cells. In the message window, you will see the following message:

Genrows is waiting for your response...

You should see the exact configuration shown in Figure 10.1; if not, we will use the RESTORE STATE

command under the EDIT heading to return to this previously generated state. When genrows prompts:

Enter restore file name:

Type:

../mixed < C R >

Note: We have used the random seed parameter in TimberWolfMC to regenerate a previous run. Whether

this state is achieved depends on the floating point arithmetic implementation of the workstation. In most

cases, the RESTORE STATE command must be used.

9) For convenience, we have unrolled the Genrows menus so that you can view all the menu entries at once:

Control Merge

Tell Point

Continue Pgm

Dump Graphics

Close Graphics
Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Divide Tile Left_Right

Merge Right

Merge Upward

Merge Left

Reset Tiles

Cancel

Divide_Tile_Up_Down
Limit Merges

Merge Downward

Draw
Draw Labels

Cancel

Draw Macros

Draw Rows
Draw Tiles

Parameters
Feed Percentage

Cancel

Min. Row Length
Row Separation

Set Spacing

Colors

Edit

Align Macro in Y

Align Rows
Edit Macro

Keep Short Row

Align Macro in X

Edit Tile

Modify Core Area

Move Macro

Numrows

Redo

Restore State

Save State

Cancel

Undo

Edit Row

10) First, turn on label drawing by selecting the DRAW LABELS menu under the DRAW heading.

11) Next, we will align two macros in the x direction. In this case, we will align the right edge of macro

C:1 with the right edge of macro C:2. Click the ALIGN MACRO IN X menu under the EDIT heading.

Genrows will prompt:

Select the reference macro by clicking any mouse button in cell center.

Use the mouse pointer to select cell C:2, the topmost macro. Genrows will highlight that macro and

prompt:

Now pick the reference corner|center for alignment.

Select the lower right corner. A black square will appear at the selected corner. Next, Genrows will

prompt:

Select the macro to be aligned by clicking any mouse button in cell center.

Use the mouse pointer to select cell C:1. At this time, C:1 will become highlighted, and the program will

respond:

58

Now pick the corner|center you wish to align.

Use the mouse pointer to select the upper right corner of macro C:1. Genrows will align the two macros

and reconfigure the rows.

12) Use ALIGN_MACRO_IN_Y under the EDIT heading to align the top of macro C:1 to the top of macro

C:3. At this point the design should look like Figure 10.3:

Figure 10.3 Configuration after macro alignment.

13) Next, we will experiment with the merge tile options. Momentarily, turn off the rows using the

IGNORE ROWS menu under the DRAW heading. Now locate Tile:8, it is to the right of macro C:2.

Now turn the rows back on using the DRAW ROWS command. Now let's perform an unlimited merge.

Select MERGE DOWNWARD under the MERGE heading. Now select Tile:8. It will momentarily

become highlighted before expanding downward. The row configuration should now look like Figure 10.4.

Figure 10.4 Unlimited Merge Downward

14) Now let us see how a limited merge works. Use the UNDO command to return to the previous state.

Another method to set the tiles back to Genrows default configuration is to use the RESET TILES option

59

under the MERGE heading. Now select the LIMIT MERGES command under the MERGE heading.

Again, select Tile :8 for a MERGE DOWNWARD operation. The row configuration should look like

Figure 10.5. We see that the two adjacent tiles have been merged.

10.5 Limit Downward Merge

16) Perform another limited merge on Tile:8. The row configuration should look like Figure 10.6. You

should now understand that the merge operations expand the size of the tile in the direction of the merge but

maintain the dimension of the tile orthogonal to the merge direction.

Figure 10.6. Configuration after second limited merge.

17) Next, set the row to tile edge spacing to 100 by using the SET SPACING command. Genrows will

prompt for a number; enter:

100 <CR>

The rows will now be 100 units away from either the tile edge or macro edge. Notice that one or more

rows are outside the core region. Click the MODIFY CORE AREA menu to increase the size of the core

60

region. Try to achieve the configuration shown in Figure 10.7. Save this configuration for later by using

the SAVE STATE command.

Figure 10.7 Saved configuration.

18) Now investigate the DIVIDE_TILE_LEFT_RIGHT command by selecting the large tile to the right of

macro block C:2. Genrows will prompt for the dividing point. If you click in the center of the tile, you

will get a configuration similar to Figure 10.8.

Figure 10.8 Dividing Tiles

19) Now select one of new tiles created by the division. Use EDIT TILE to change the attributes of these

tiles. In addition, try the EDIT MACRO command. Refer to the graphical interface section of Genrows for

more details. Experiment with various merges and divisions. When you have finished, restore the state you

saved back in step 17. Exit Genrows with CONTINUE PGM.

20) Watch TimberWolfSC place the mixed design. You may stop the annealing at any time to draw the

nets or change to drawing single cell moves. Allow TimberWolfSC to finish. This concludes the third

tutorial.

61

1 1 . TUTORIAL #4 - N-way Circuit Partitioning using Tomus
Goal: Divide and conquer the layout process of a mixed macro and standard cell circuit by dividing a

complete chip into n complete sub-chips by a simulated annealing guided partitioning technique. Each of

the sub-chips are placed and routed using our standard placement and routing flows described earlier. This is

accomplished in parallel using n workstations over the network using PSC, the parallel scheduler of

TimberWolfSC.

1) If you haven't invoked the X server and set the TimberWolf environment, execute steps 1-3 of Tutorial

#1.

2) Change directory to the input directory with the circuit to be partitioned:

cd test/part <CR>

3) If you list the contents of the directory you should see the following files:

ls <CR>

design.cel design.par.sav

4) Now type TimberWolf to see its options and the available flow directories:

TimberWolf <CR>
Incorrect syntax. Correct syntax:
TimberWolf [-gpndw] designName [windowId] [flowdirectory]

whose options are one or more of the following:
g - general mode - does not use TimberWolf system
 information. Default is TimberWolf mode
p - pick mode - [graphics only] wait for user
 upon entering the program
n - no graphics - the default is to open the
 display and output graphics to an Xwindow
d - prints debug info and performs extensive
 error checking
w - parasite mode will inherit a window. Requires
 a valid windowId

Available installed flow directories are:
flow->flow.noroute
flow.noroute
flow.part
The current default flow directory is denoted by the arrow.
terminated abnormally with 1 error[s] and 0 warning[s]

5) You have two options at this point:

a) To set the default to the Tomus flow option permanently, type:

change_flow <CR>

and check out the correct syntax of the command which is

change_flow flow.part <CR>

If you chose this option, in addition you have to type the following command line to execute TimberWolf:

TimberWolf design <CR>

 to start the flow.

Alternatively,

b) To set the default to the Tomus flow option just temporarily for this run of the Tomus flow,

use the following command line to execute TimberWolf:

TimberWolf design flow.part <CR>

You cannot use the no-graphics option [-n] on the command line because Tomus is interactive graphically.

62

6)You should see TimberWolf first create a new window. In this window, you should see graphically that

the syntax program is being executed on the input files of the design. You will next see a flow diagram for

the flow using Tomus. Figure 11.1 shows the flow-chart which is called flow.part. The first step in the

flow is the shell script edit_twfiles.

The following programs will run in sequence as described in the previous flows of TimberWolf:

1) Mincut

2) TimberWolfMC

Follow the normal instructions for the above programs as you have done before in Tutorials 1-3.

Control Flow

edit_twfiles

Mincut

TimberWolfMC

Tomus

PSC

Msg>

Figure 11.1

Caution: At the last stage of TimberWolfMC, the screen will show the circuit core with default rows

generated by Genrows in the space available after the macros have been placed and compacted by

TimberWolfMC. The purpose of this stage is twofold.

63

a) It gives the user an option to generate rows for a flat design, i.e. bypass Tomus and place and

route flat as in the general flow without partitioning. Ignore the current rows if you want to partition the

circuit.

b) It also allows the user to manually clean up any overlap which the macros might have after

placement. The graphics menu of Genrows has an EDIT option which has a sub-menu MOVE MACRO

which should be used at this point if necessary.

7) The first diagram you will see on the window when Tomus starts its mission is the output of

TimberWolfMC. A dialog box will appear at the bottom left screen asking a question:

Do you wish to Partition the design?

ACCEPT REJECT
tomus

NOYES

Click YES and ACCEPT unless you want to place and route flat (item 4a).

8) The window will now have the core of the circuit with the macros and the pads. The user will be

prompted to define the physical locations and the size of the partitions by clicking on the core. For each

partition, the user needs to click on the two diagonal points of the partition, first, the lower left corner and

then the upper right corner. If the user clicks close enough to the core edges or the macro edges, Tomus

will snap the partition edges to these edges. The message window at the bottom will say:

 Msg > The first point should be the lower left corner of the partition

You should now click for the lower left corner of the first partition. The message window will then ask for

the second point, the upper right corner of the partition. Note, if the partition you just created divides a

macro, or an already created partition, you will get an error message in the message window. If the

partition you created is valid, it will be painted blue to guide you for the area available for the partitions

you may/may not create next. When you are done with a partition, a dialog box will appear as shown

below:

Do you want another partition?

ACCEPT REJECT
tomus

NOYES

For the next partition, click on YES and repeat the above process of clicking on diagonal points of a

partition. The partitions created earlier will remain painted blue. You will see the same instructions on the

message window under the TimberWolf window. You will be given chances for creating as many partitions

as you want through the dialog box shown above. You can terminate this step by clicking on NO. If you

do not cover certain parts of the core by any partition, that area of the core won't be treated as part of the

core to place standard cells.

10) At this point you will be asked a question :

64

Do you wish to reconfigure partitions?

ACCEPT REJECT
tomus

NOYES

If you are not satisfied with the partitions you just made, click YES and redo 9). Else continue with 11).

11) The window will draw the picture with the core as before, but now it will have additional blue lines to

show the partition boundaries. It will also draw some additional cut lines in black, used internally by the

program for its partitioning process. Select the DRAW menu and select sub-menu IGNORE LINES. This

will allow you to see the partitions without the cut lines in them. Select the DRAW menu again and select

the sub-menu DRAW NETS. This will show you the net connectivity of the circuit. Note the standard

cells are now randomly clustered at the center of the tiles in each partition. To confirm this, you can select

DRAWSTDCELLS from the DRAW menu and have a look at the locations of the clusters (a cluster is a

set of standard cells located in a given tile) at this moment. This will show the initial state of the

partitioning process.

12) Select the CONTROL menu and select sub-menu CONTINUE PROGRAM. Tomus is going to start

the simulated annealing process to find you the optimal clusters of cells in the partitions you created. The

message at the bottom of the window will say:

 Msg > Simulated Annealing in Progress

13) Wait until the window redraws the state of the circuit after the annealing is completed. The message

window will say :

Msg > Partitioning done and Tomus is ready to split Partitions

This is a pause to observe the state of the net connectivity of the circuit after partitioning and comprehend

the improvement in the congestion. Select the CONTROL menu and select sub-menu CONTINUE

PROGRAM when you are ready to proceed.

14) Mickey, our macro cell global router, is used to generate global routes to the nets of the circuit and

pseudopads and padgroups are created based on these routes. These new pads are equivalent to I/O pads

(ports) of the partitions when you visualize them as sub-chips.

The message window will say:

 Msg > Mickey in Progress; Tomus will create Pseudopads (continue)

As Mickey completes execution, the window will redraw the circuit with the pseudopads just generated on

the edges of each of the partitions. The message window will say:

 Msg > This shows pseudopads on the Partition core edges

This is a pause to observe the pseudopads of the partitions. Select the DRAW menu and sub-menu

IGNORE NETS if you don't want to view the nets again. Select the CONTROL menu and select sub-

menu Continue Program when you are ready to proceed.

15) Configure rows on Partitions. The message at the bottom of the window will say

 Msg > Click in the middle of a partition to configure rows.

Click in the middle of a partition and a new window will appear with the picture of that partition with its

macro cells (if any) and some default rows configured already by Genrows. If you wish, you can modify the

row parameters of the current configuration with the help of Genrows' interactive graphics. Select

CONTINUE PROGRAM from the CONTROL menu and exit out of Genrows when you have finished

65

configuring the rows for this partition. The Tomus window with the main circuit core is going to appear

again with the rows you configured in the partition just now. Continue clicking on other partitions which

do not have any rows configured yet and repeat the Genrows call. You will see the same instructions on the

message window under the TimberWolf window. When you are done with all the partitions, a dialog box

will appear as shown below:

Do you wish to reconfigure rows in partitions?

ACCEPT REJECT
tomus

NOYES

If you are not satisfied with the rows, click YES and redo 15). Else click NO. The message at the bottom

of the window will say:

 Msg > Ready to create Inputs for TimberWolfSC.

This is the last pause before closing the graphics window in Tomus. When you are ready, select the

CONTROL menu and select sub-menu CONTINUE PROGRAM. Tomus is going to continue by

generating input files for TimberWolfSC for the PSC program and terminate.

16) You will see the flow chart of the TimberWolf flow showing PSC active. PSC is going to execute

next and the window will show the details of the nodes available, scheduled jobs and queued jobs. Select

the PGMS menu and select EXECUTE PGMS. This will start the execution of TimberWolfSC on the

nodes specified in your nodes file. For your convenience, we have set the nodes file for you for this

Tutorial. Change the file when you need to add your real workstation names at your work place.

TimberWolfSC graphics windows will show up on the remotes sites specified in the nodes file. Wait until

the PSC window shows the status of all the jobs scheduled as complete. You can select the graphics menu

CONTROL and sub-menu EXITPGM now. This ends the execution of the entire circuit partitioning

process. Note, you can run the same Tutorial on a circuit with only standard cells.

66

1 2 . GENROWS - ROW GENERATION PROGRAM

1 2 . 1 . FUNCTION

The standard cell (and gate array) row topology generation is performed by the program Genrows

which is spawned as either a child process of the TimberWolfMC floorplanner or the Tomus n-way

partitioner. A valid configuration of standard cell rows must satisfy the following constraints: the standard

cell rows must span the core but must not overlap the macro cells or the macro cell routing area, the total

row length should be equal to the sum of the standard cell widths, and the standard cell rows should be

placed at the specified row separation.

TILE 4

TILE 5

TILE 3

TILE 1 TILE 2

TILE 6

TILE 1

TILE 1 TILE 2

TILE 4

TILE 3

TILE 7

TILE 5

TILE 6
TILE 8

C48

C49

C47

core region
bounding box

Figure 12.1.1. Tile construction and merging.

The floorplanner (or partitioner) outputs the size of the core region deemed necessary and the vertex

lists of all the macro cell blocks. Any standard cell clusters, having served their purpose, are thrown away.

The algorithm is as follows: First the entire core region is broken into tiles. The tiles are constructed from

the spaces unoccupied by the macros and the macro cell routing. Vertically adjacent tiles are merged if their

67

horizontal extents match. Figure 12.1.1 shows an example of the evolution of the development of the

tiles. Note that tiles 4 and 5 of the original tiles are merged as well as tiles 6 and 7.

Next, the placement of the standard cell rows is determined. Rows are first proposed for each tile.

Additional rows across the top of the core are added if necessary to make the total row length exactly equal

to the total cell width. Space is reserved for additional feedthrough cells. This space is controlled by the

parameter file keyword feed_percentage; this is the additional percentage of the total row length which

will be allocated for feedthroughs. The final result of Genrows is shown in Figure 12.1.2. The dark region

at the end of each row is the area reserved for extra feedthrough cells. TimberWolfSC is not constrained to

put the feedthroughs in this region; instead, it is constrained to place feedthroughs and row-based cells

within the total row length defined by the light and dark areas.

Figure 12.1.2. The final standard cell row topology.

After generation of a row topology, Genrows enters a graphics loop waiting for the user to enter

commands to modify the row configuration (unless graphics.wait has been turned off in the

circuitName.par file). The user may enter any command described in the graphical interface section. When

satisfied, the command CONTINUE PGM is issued and Genrows will generate the files necessary for

TimberWolfSC.

1 2 . 2 . INPUT

The input to Genrows is the circuitName.mver file. It is an internal file and subject to change.

68

1 2 . 3 . OUTPUT

The output of Genrows is the circuitName.blk file and its description is as follows:

rows integer

row integer integer integer integer

[except integer integer • • • except integer integer]

[class integer] [mirror]

row integer integer integer integer

[except integer integer • • • except integer integer]

[class integer] [mirror]

•

•

•

row integer integer integer integer

[except integer integer • • • except integer integer]

[class integer] [mirror]

The keyword rows is followed by an integer specifying the number of rows for the circuit. The

description of each row begins with the keyword row followed by four integers. The first pair of these

integers is the absolute x and y coordinates (respectively) of the lower left corner of the row. The second

pair of these integers is the absolute x and y coordinates (respectively) of the upper right corner of the row.

TimberWolfSC handles split rows, which are due to the presence of macro cells on the chip. If a

portion of a row is covered by a macro cell, the except keyword is used to indicate this. This keyword is

followed by two integers specifying the range (in the x direction) of the row which is not available for the

placement of standard cells. Note that any number of excepts can be specified, that is, a row can be split

any number of times.

69

pad
s

macro

pin on pad

pin on macro

Figure 12.3.1

A hypothetical example of a mixed macro/standard cell chip is shown in Figure 12.3.1. Genrows

would output the following:

rows 6
row 0 0 400 25 except 112 400
row 0 50 400 75 except 112 400
row 0 100 400 125 except 112 275
row 0 150 400 175 except 112 275
row 0 200 400 225
row 0 250 400 275

70

1 2 . 4 . GRAPHICAL INTERFACE

Control Merge

Tell Point

Continue Pgm

Dump Graphics

Close Graphics
Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Divide Tile Left_Right

Merge Right

Merge Upward

Merge Left

Reset Tiles

Cancel

Divide_Tile_Up_Down
Limit Merges

Merge Downward

Draw
Draw Labels

Cancel

Draw Macros

Draw Rows
Draw Tiles

Parameters
Feed Percentage

Cancel

Min. Row Length
Row Separation

Set Spacing

Colors

Edit

Align Macro in Y

Align Rows
Edit Macro

Keep Short Row

Align Macro in X

Edit Tile

Modify Core Area

Move Macro

Numrows

Redo

Restore State

Save State

Cancel

Undo

Edit Row

Control Menu

{Auto Redraw On | Auto Redraw Off} - toggles between automatic redraw when part of the

screen has been covered (on) and suppresssion of this feature (off).

Close Graphics - at any time the user can close the windows and return to batch mode.

Colors - individual colors may turned off or on using a dialogbox.

Continue Prog. - breaks the graphics wait loop and continues execution of the program.

Dump Graphics - dumps the contents of the screen to files in the directory defined by the

environment variable $DATADIR defined in the current cshell. The Draw program can be used

to display this data at a later date.

Fullview - returns the user to full view of the main window.

{Graphics Update On | Graphics Update Off} - toggles between automatic redraw after each

adjustment of the cost function parameters (on) and the inhibition of the redraws (off). Interrupt

capability remains available in this mode.

Redraw - refresh the display.

Tell Point - returns the user coordinate under the mouse pointer when any mouse button is clicked

in the main window.

Translate - performs a reorigin of the main window. The coordinate under the mouse pointer when

any mouse button is clicked in the main window will become the new center of the main

window.

Zoom - allows the user to zoom in or out to any part of the screen. The zoom (in) area is

accomplished by either picking the lower left and upper right points of the zoom rectangle or by

entering them in the message window. The points are entered as two integers separated by

commas, ie. 20, 40 for the point (20,40). Note: the pointer must be in the message window to

enter points through the keyboard. If the points are entered in the reverse order (upper right,

lower left), a zoom out will be performed.

71

Edit Menu

Align Macro in X1 - used to align the x-coordinates of the center or corner of one macro cell to

the center or corner of another macro cell. The alignment process is as follows: First select a

macro which will become the reference for alignment. The selected macro will become

highlighted. Next, select the reference corner. A black square will appear on the chosen corner

or center of the macro cell. Now select the macro which is to be aligned to this reference macro.

Now this cell will become highlighted. Select the corner or center of the macro to be aligned.

Genrows will respond by aligning the second selected macro to the reference macro. If you are

not satisfied with the alignment, use the UNDO command described below.

Align Macro in Y1 - used to align the y-coordinates of the center or corner of one macro cell to

the center or corner of another macro cell. The process is similar to described in Align Macro in

X.

Align Rows - used to align the rows contained in two different tiles. Genrows automatically aligns

as many rows as possible; this function is a convenient way of setting the channel separation to

be the same for two chosen tiles. The alignment process is as follows: Select the reference tile.

It will become highlighted. Now select the tile whose rows need to be aligned. This tile's

channel width will be set to the reference tiles channel separation.

Edit Macro1 - used to edit the position and orientation of a macro. To edit a macro, first select a

macro with the mouse pointer. This picked macro will become highlighted. Now pick the

reference point on the macro. A dialog box will appear on the screen which looks like the

following:

Coordinates

ACCEPT

X :
Y :
Delta X:
Delta Y:
Orient :

REJECT

0|1|2|3|4|5|6|7

500
0
0

500

macro

The user may change the coordinates of the macro by either changing the coordinates directly or

by adding a delta to the current position. In the latter case, Genrows will update the coordinates

automatically. To modify the orientation of the macro, click the mouse pointer in the window

which contains the desired orientation. Genrows will respond by rotating the macro in the draw

window to the chosen orientation. If the user wishes to cancel the selection, click on REJECT;

otherwise, click on the ACCEPT button.

1Deactived during Tomus n-way partitioning.

72

Edit Row - allows the modification of a row's class and mirror attributes. Select a row with the

mouse pointer. The selected row will become highlighted. Next, a dialog box will appear on

the screen:

ACCEPT

Left : 1257
Bottom : 3296
Right : 3599
Top : 3408

CANCEL

row

Legal Tile
Row Height

1
YES NO

The row attributes should be added only after the row topology has been determined. Note: It is

recommended to set the mirror and class attributes for the entire tile rather than to edit individual

rows. The mirror and class attributes are described in 5.2.1.

Edit Tile - allows the modification of a tile's attributes. Select a tile with the mouse pointer. The

selected tile will become highlighted. Next, a dialog box will appear on the screen:

ACCEPT

Tile : 5
Left : 0
Bottom: 0
Right : 200
Top : 250

CANCEL

genrows

Legal Tile
Row Height
Max. No. of Rows
Number of Rows
Force No. of Rows
Min. length of row
Start of row
End of row
Channel Separation
Default Class
Mirror Rows

YES NO
112
5
5
YES NO
50
1
199
112
1
YES NO

At the top of the dialog box, the tile name and dimensions are given. The first tile parameter is

the Legal Tile switch. If Legal Tile is YES, then Genrows will attempt to put rows in this tile;

otherwise; no rows will be placed in this tile. The second tile parameter is the height of the

row. Each tile may have a different row height, but the default is determined from the average

73

standard cell height. If you need only a small number of rows to have a different row height,

you may need to divide a tile into parts. See DIVIDE TILE LEFT_RIGHT below. The

parameter Max. No. of Rows sets the channel separation in this tile based on the height of the

tile and value of this parameter. The tile will now be constrained to place no more than Max.

No. of Rows within its region; however, it may place less rows if insufficient row length is

available. The field Number of Rows contains the actual number of rows placed in this tile.

Since Genrows places rows from the bottom of the core region upwards, only the top tile

containing rows may encounter the situation where Max. No. of Rows does not equal Number

of Rows. If the Force No. of Rows switch is set to YES, Genrows will use the No. of Rows

value to set the number of rows in this tile, maintaining the row separation determined by Max.

No. of Rows. The user may force the inequality condition Max. No. of Rows does not equal

Number of Rows in any tile by using the Force No. of Rows switch. The Min. length of Row

parameter is used as a criteria for determining whether to place rows in this tile; if the tile width

is less than Min. length of Row, no rows will be occur in this tile. The Start of Row and End

of Row parameters adjust the beginning and end of all the rows in the tile. All rows must begin

and end within the tile. The distance between adjacent rows may be specified using Channel

Separation. The default class and mirror attributes for all rows in this tile may be set using

Default Class and Mirror Rows respectively.

{Keep Short Row | Discard Short Row} - toggles between keeping the last short row (a row

less than the tile width) if it exists and removing any short rows. Genrows will round to the

row which makes the placed row length closest to the total row length desired.

Modify Core Area2 - resizes the core area. The user must pick the lower left corner of the core

region followed by the upper right corner of the core region. The core region must be at least as

large as the minimum bounding box containing all macro cells.

Numrows3 - modifies the number of standard cell rows. Genrows will divide the total row length

evenly between all of the rows.

Redo - returns to the state which was undone in the last step.

Restore State - returns to a previously saved row configuration. Any number of saved

configurations are possible but all configuration names must be unique. Genrows will prompt

for state name; enter it in the message window. States may be retrieved from previous

TimberWolf executions if the total row length and macros in the design remains constant

between runs.

Save State - saves the current row configuration. This configuration may later be retrieved using

RESTORE STATE. Genrows will prompt for a state name; enter it in the message window. If

state name is not unique, Genrows will replace the contents of the named state save file.

Undo - cancels the effect of the last operation. The UNDO command itself can be canceled by the

REDO command.

2Deactived during Tomus n-way partitioning.
3Available only in standard cell only designs.

74

Merge Menu

Divide Tile Left_Right - splits a tile into two pieces along a vertical cut line. The dividing line

is determined by the mouse pointer.

Divide Tile Up_Down - splits a tile into two pieces along a horizonal cut line. The dividing line

is determined by the mouse pointer.

{Limit Merges | Unlimit Merges} - toggles between limiting tile merge operations to adjacent

tiles and allowing the maximum number of tiles to be merged in a single merge operation.

Merge Downward - attempts to merge tiles below the selected tile. The width of tiles below the

selected tile must be equal to or greater than the selected tile in order for the merge to proceed.

The merged tile expands downward, but the width of the tile remains constant.

Merge Left - attempts to merge tiles to the left of the selected tile. The height of tiles to the left of

the selected tile must be equal to or greater than the selected tile in order for the merge to

proceed. The merged tile expands to the left, but the height of the tile remains constant.

Merge Right - attempts to merge tiles to the right of the selected tile. The height of tiles to the

right of the selected tile must be equal to or greater than the selected tile in order for the merge to

proceed. The merged tile expands to the right, but the height of the tile remains constant.

Merge Upward - attempts to merge tiles above the selected tile. The width of tiles below the

selected tile must be equal to or greater than the selected tile in order for the merge to proceed.

The merged tile expands upward, but the width of the tile remains constant.

Reset Tiles - returns the tile configuration to the default maximally horizontal configuration, that

is, the tiles will be constructed so that their width is maximized.

Draw Menu

{Draw Labels | Ignore Labels} - toggle for drawing the labels for macros, tiles, rows, etc.

{Draw Macros | Ignore Macros} - toggle for drawing the macro cells.

{Draw Rows | Ignore Rows} - toggle for drawing the standard cell rows.

{Draw Tiles | Ignore Tiles} - toggle for drawing the core region tiles.

Draw Parameters (these parameters may be set in the circuitName.par file)

Feed Percentage - specifies the amount of space to be reserved for feedthrough cells. The amount

of cell width reserved will be feed_percentage multiplied by the total width of the row-based

cells. TimberWolfSC reports the feed percentage of the current execution at the bottom of the

circuitName.out file if global routing has been requested. Feed percentage is a floating point

number in the range [0.0-100.0].

Min. Row Length - sets a limit on the size of a valid tile, that is, any tile whose width is smaller

than the Min. Row Length will not have rows. All tiles are set to this value.

Row Separation - represents the desired amount of separation between rows. The amount of

separation between rows is this number times the average height of the rows. This is, if you

want the row separation equal to the average row height, then this number should be 1.0. On the

other hand, if you want the row separation to be twice the height of the rows, then this number

should be 2.0. Normally, a value of 1.0 is appropriate.

Set Spacing - constrains the distance between the edge of a tile and the beginning and end of a row.

75

1 3 . MICKEY

1 3 . 1 . FUNCTION

1 3 . 2 . INPUT

1 3 . 3 . OUTPUT

1 3 . 2 . GRAPHICAL INTERFACE

76

1 4 . M INCUT - STANDARD CELL CLUSTERING

1 4 . 1 . FUNCTION

The Mincut program partitions the standard cells in the netlist into standard cell clusters for

floorplanning. These clusters have variable aspect ratios, and in addition, the signal pin locations are not

fixed but may be adjusted in order to minimize the wirelength. The Mincut program features a new

objective function which better enables the program to find natural partitions of the standard cells [CS88].

The Mincut program partitions the standard cells into standard cell clusters which are approximately equal to

the average macro cell area. This insures that both macro cells and standard cell clusters have equal

importance in the determination of the core region topology. The area of a standard cell cluster is given by:

As = r + 1 Ac i∑
i = 1

ns

where
As = area of standard cell cluster s

r = the ratio of the row separation distance and the row height

ns = number of standard cells in cluster s

Ac i = area of standard cell i

The estimated row separation factor r accounts for the standard cell routing area needed between the rows.

This parameter (rowSep) is user supplied.

After partitioning, the Mincut program outputs a netlist for the floorplanner containing the macros

and the standard cell clusters. An example of a mixed design after partitioning is shown in Figure 14.1.1

Cells C1-C46 are standard cell clusters. The macro cells (C47-C49) are arbitrarily placed at the origin and

the pads (C50-C77) are placed outside the estimated core region.

77

Figure 14.1.1 Result of the Mincut partition for a mixed macro/standard cell example.

1 4 . 2 . INPUT

The input file is circuitName.cel which has already been described.

1 4 . 3 . OUTPUT

The output files are circuitName.mcel which is fed to the floorplanner TimberWolfMC and

circuitName.scel which is input to the row-based placement and global routing tool TimberWolfSC.

1 4 . 4 . GRAPHICAL INTERFACE

The Mincut program has no graphical interface.

78

1 5 PSC
1 5 . 1 . FUNCTION

PSC schedules TimberWolfSC to run on n workstations simultaneously. The program follows

Tomus in the partitioning flow. PSC has the knowledge of the number of partitions and other circuit

parameters from the flow and attempts to schedule and run TimberWolfSC to place the standard cells of the

partitions. If the graphics mode is on, the user can watch the graphics window running TimberWolfSC on

n sub-chips of the original circuit on the n workstations he has specified as available in the input file nodes.

This program is in the developmental stage and hence the input and output files are not final. The

following sections will describe its current features.

1 5 . 2 . INPUT

PSC will schedule TimberWolfSC on the user's current workstation for all n sub-chips by default.

The user can list at most n nodes or workstations available for PSC, a file called nodes. All the other input

files required to run TimberWolfSC will be created by Tomus automatically.

1 5 . 3 . OUTPUT

PSC will create output files for each sub-chip for error-log, output messages and the regular

TimberWolfSC output files. The error-log file for each partition i on each node, is

circuitName:i.node.errorlog. The output file of PSC for each partition i on each node, is

circuitName:i.node.out.

1 5 . 4 . GRAPHICAL INTERFACE

 At the very beginning of execution, PSC will enter the graphics wait loop. When in the loop, PSC

will wait for the user to click on one of the top menu fields in the menu window. The pulldown menu for

that entry in the menu window will then become visible. The user then clicks in the desired box for the

desired option. PSC will execute the option and return to the graphics wait loop. To continue the program

and leave the wait loop, the user must click on the CONTROL menu heading, and then click on the

CONTINUE PGM entry. The user may cancel any menu by hitting the CANCEL box in that menu.

Figure 15.4.1 shows the contents of all the pulldown menus.

Control Draw
Execute Pgms

Cancel

Tell Point

Continue Pgm

Dump Graphics

Close Graphics

Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Colors

Figure 15.4.1 PSC menu options

79

The Control Menu has the same functions as TimberWolf's other programs. Please refer to the

earlier sections for reference.

Edit Menu

Execute Pgms allows the user to start executing the scheduled processes on the nodes specified as

shown in the graphics window. A sample of the graphics window in shown is Figure 15.4.2.

Nodes Available

Scheduled Jobs

Queued Jobs

StatusNode

station1

station2

station3

design:1

design:2

design:3

station1

station2

station3

complete

running

scheduled

design:4

Figure 15.4.2 Sample PSC graphics window

80

1 6 . SGGR.

1 6 . 1 . FUNCTION

1 6 . 2 . INPUT

1 6 . 3 . OUTPUT

1 6 . 4 . GRAPHICAL INTERFACE

81

1 7 . SYNTAX .

1 7 . 1 . FUNCTION

This program is incorporated into the twflow program. Its function is to check for errors in the user's

input. It is implemented using a yacc/lex parser. This program also compiles vital statistics on the design

such as number of standard cells, number of macro cells, etc. to make it easier for downstream programs to

allocate resources.

1 7 . 2 . INPUT

The input file is circuitName.cel which has already been described.

1 7 . 3 . OUTPUT

There are no user output files. An internal system file is generated, the circuitName.stat file, but the

format of this file is subject to change.

1 7 . 4 . GRAPHICAL INTERFACE

The syntax program has no graphical interface.

82

1 8 . TIMBERWOLF (TWFLOW) - THE MASTER CONTROL

1 8 . 1 . FUNCTION

The sequence of place and route programs is controlled by the master flow program called twflow.

The program twflow creates a flow chart in the graphics window (as shown in Figure 18.1.1) and

automatically shows the current status of the layout process by highlighting the current node in the flow

chart. A graph is used to describe the design flow. The programs or shell scripts in the flow are nodes in

the graph (flowchart) and the edges between the nodes are valid program execution sequences. The program

uses file dependencies in order to determine if a program or shell script needs to be executed, similar in

function to the Unix make.˚̊

 Control Flow Menu
Window

Message
Window

Main
Window

Syntax

Mincut

TimberWolfMC MC_route

Edit Files

 MSG>

TimberWolfSC

SC_route

1

2

3

4

5

6

7

Figure 18.1.1. The TimberWolf interface.

The program twflow controls not only the sequence of programs to be executed but also functions as

the master control for the X11 graphics. Figure 18.1.1 also shows the X-window interface maintained by

the twflow program. It consists of three windows: the menu window which controls the pull-down menus,

the main window where the current state of the design and/or flow is depicted, and the message window

which queries and informs the user of the current status of the design.

The intent was to design a simple interface that was flexible, maintainable, and portable. Flexibility

was achieved by not allowing any program to use X11 routines directly. Instead, all graphics requests are

handled by an intermediate layer of routines which handle the translation between user coordinates and pixel

coordinates. These routines perform the actual requests to the X server. In this way, all programs are

83

written in the user's coordinate system regardless of graphics system used. If another graphics package

becomes available, only the library of intermediate functions needs to be changed.

1 8 . 2 . INPUT

In order to make the system flexible from the user's perspective, twflow's sequence of programs is not

predefined; instead, it is defined by an ASCII input file. A portion of the twflow input format is shown

below.

numobjects 7

.

.

.

pobject TimberWolfMC 4: 3 6

path :

drawn : 450 450 750 550

edge 3:

ifiles: $.mcel $.mpar $.mnet*

ofiles: $.mdat $.blk

args : -ws $ @WINDOWID

drawn : 600 550 600 650 600 550 620 570 600 550 580 570

edge 6:

ifiles: $_io.mcel $_io.mpar

ofiles: $_io.mdat $_io.blk

args : -ws $_io @WINDOWID

drawn : 250 500 450 500 250 100 450 100 250 100 250 500

430 520 450 500 430 480 450 500

.

.

.

Figure 18.2.2. A portion of the twflow file

Each program object or pobject is numbered as shown in Figure 18.2.2. The program

TimberWolfMC, for example, is program number 4 and it may be executed in a valid sequence after

program 3 or program 6. The path of the program may be changed from its default place and the user may

choose how he wishes to draw the object. Next, each edge is specified, that is, how it is to be executed and

what files it depends on. The $ is a special string substitution character which stands for the design name.

For each edge we list the input and output files that are required and generated by the program. By looking

at the time stamp of each of these files we can determine if this program needs to be executed. In addition,

each edge allows different argument lists to be passed to the executed program. The key word

@WINDOWID tells twflow that the child process is capable of inheriting the graphics interface.

Optional files are followed by an asterisk. For example, $.mnet* is an optional input file to

TimberWolfMC on edge 3.

84

It is very easy to modify the sequence of programs in order to customize it to particular applications;

for example, another flow file could be generated which allows the addition of front-end and back-end

translation programs or perhaps another would omit the @WINDOWID key words for batch mode

processing.

Twflow recognizes two distinct flow file hierarchies: a directory exists for each high level design

strategy, and a file exists for each design style (standard, mixed, and macro) within that strategy. In

addition, at the design style level, one flow file per style is provided for graphics mode (.flow), no graphics

mode (.fnog), and debug mode (.fdbg). Two examples of high level strategies are the basic placement and

global routing strategy, flow.noroute, and the n-way partitioning strategy, flow.part. Figure 18.2.3

graphically depicts the flow file structure.

TimberWolf/bin/flow directory

flow.noroute directory
flow.part directory

macro.flow
macro.fnog
macro.fdbg

macro.flow
macro.fnog
macro.fdbg

macro.flow
macro.fnog
macro.fdbg

mixed.flow
mixed.fnog
mixed.fdbg

mixed.flow
mixed.fnog
mixed.fdbg

mixed.flow
mixed.fnog
mixed.fdbg

standard.flow
standard.fnog
standard.fdbg

standard.flow
standard.fnog
standard.fdbg

standard.flow
standard.fnog
standard.fdbg

tomus.flow
tomus.fnog
tomus.fdbg

future/user_defined flows

85

1 8 . 3 . OUTPUT

The output of Twflow is the circuitName.stat file which contains design statistics used by other programs

for efficient allocations of resources.

1 8 . 4 . GRAPHICAL INTERFACE

Control Flow
AutoFlow

Cancel

Execute Pgm

Pick Pgm
Prompt

Tell Point

Continue Pgm
Dump Graphics

Close Graphics
Auto Redraw

Fullview
Redraw

Cancel

Translate

Zoom

Exit Program

Colors

Control Menu

{Auto Redraw On | Auto Redraw Off} - toggles between automatic redraw when part of the

screen has been covered (on) and suppresssion of this feature (off).

Close Graphics - at any time the user can close the windows and return to batch mode.

Colors - individual colors may turned off or on using a dialogbox.

Continue Pgm - breaks the graphics wait loop and continues execution of the program.

Dump Graphics - dumps the contents of the screen to files in the directory defined by the

environment variable DATADIR defined in the current cshell. The Draw program can be used to

display this data at a later date.

Exit Program - exit the Twflow program.

Fullview - returns the user to full view of the main window.

Redraw - refresh the display.

Tell Point - returns the user coordinate under the mouse pointer when any mouse button is clicked

in the main window.

Translate - performs a reorigin of the main window. The coordinate under the mouse pointer when

any mouse button is clicked in the main window will become the new center of the main

window.

Zoom - allows the user to zoom in or out to any part of the screen. The zoom (in) area is

accomplished by either picking the lower left and upper right points of the zoom rectangle or by

entering them in the message window. The points are entered as two integers separated by

commas, i.e. 20, 40 for the point (20,40). Note: the pointer must be in the message window

to enter points through the keyboard. If the points are entered in the reverse order (upper right,

lower left), a zoom out will be performed.

86

Flow Menu

Autoflow - determines which programs need to be executed based on the input and output file time

stamps, and calls each program in turn, passing control of the graphics window to the called

program.

Execute Pgm - executes a single program and returns. Program needs to be selected using PICK

PGM.

Pick Pgm - select the program to be executed with EXECUTE PGM.

{Prompt On | Prompt Off} - toggles between prompting the user to decide which path to take

when an out of date program has multiple execution paths and always taking the first out of date

path given in the flow file.

87

1 9 . TIMBERWOLFMC

1 9 . 1 . FUNCTION

TimberWolfMC is a timing driven floorplanner which handles cells of any rectilinear shape

[Sec88]. Furthermore, the cells may have fixed geometry including pin locations (hard macros) or the cells

may have an estimated area with a specified aspect ratio range and with pins that need to be placed (soft

macros). In addition, the cells may have several possible instances, whereby TimberWolfMC is to select

the one which is most suitable. Cells may also be grouped hierarchically. Cells and/or cell groups may be

restricted to subregions within the core region. Through the use of the X11 graphics interface, the user may

interrupt the automatic execution at any time to add region restrictions or to place macros at specific

locations. TimberWolfMC also features a sophisticated I/O placement algorithm which places the pad cells

so as to minimize wirelength subject to side, spacing and grouping constraints.

Both TimberWolfMC and the standard cell placement program TimberWolfSC support timing

driven placement. The length of the signal paths are forced to lie within user specified bounds. Below is an

example of a critical path where A, B, and C are the names of the signals comprising the path, and 0 and

2500 are the lower and upper bounds for the length of the path, respectively.

path A B C : 0 2500

TimberWolfMC insures that the sum of the lengths of the individual signals (A, B, and C) meet

the given bounds avoiding the need for the user to partition the path length between the individual signals

of the path. Other timing driven placements schemes have been proposed [ML89][OI86][HNY86] but none

of them are simulated annealing based and each of these schemes dealt with timing constraints on individual

nets rather than signal paths. The use of timing driven placement with simulated annealing was first

suggested for gate arrays by de Forcrand et al.[dFZ87] but it was not mentioned in the paper whether the

time constraints were incorporated into the cost function. The critical path method is superior to net

weighting techniques because it overcomes the partitioning problem and reflects more accurately the true

timing constraints to be satisfied.

TimberWolfMC uses a dynamic interconnect-area estimator in order to allocate the necessary

interconnect space around each cell [Sec88]. Failure to account for the correct amount of routing area during

floorplanning results in placements that require significant placement modification during detailed routing.

In this algorithm, we are using the floorplanner to determine the relative placement of the macro cells to the

standard cell clusters. If large amounts of placement modification are required during detailed routing, this

relative placement will be destroyed. TimberWolfMC updates its estimate of the core region periodically

during the course of an execution of the simulated annealing algorithm. The core area estimate in this case

is the sum of the macro cell area, the estimated macro cell routing area, and the area of the standard cell

clusters. Standard cell clusters already have routing area added to them.

 At the completion of the simulated annealing run, the floorplanner has determined the placement

of the macro cells. The result of floorplanning is shown in Figure 19.1.1.

88 ˚

C1

C2

C3

C4

C5
C6C7

C8 C9
C10

C11

C12
C13

C14

C15

C16

C17

C18

C19

C20

C21

C22

C23

C24

C25

C26

C27

C28

C29

C30C31

C32

C33

C34

C35 C36

C37

C38

C39

C40

C41

C42

C43
C44

C45

C46

C47

C48

C49

C50 C51 C52 C53 C54 C55

C56

C57

C58

C59

C60

C61

C62

C63

C64 C65 C66 C67 C68 C69

C70

C71

C72

C73

C74

C75

C76

C77

Figure 19.1.1. Result of floorplanning.

1 9 . 2 . INPUT

The inputs to TimberWolfMC are the circuitName.cel, circuitName.par, and circuitName.net files

previously described in the TimberWolf input file section.

1 9 . 3 . OUTPUT

The output from TimberWolfMC is the circuitName.mdat file described in the TimberWolf output file

section.

1 9 . 4 . GRAPHICAL INTERFACE

TimberWolfMC allows the user to change various parameters during a graphics wait loop. If

no.graphics.wait has not been specified, TimberWolfMC will enter graphics wait loops at various

logical times during the program - after initial placement, after final placement, and after compaction. In

addition, the user may interrupt the progression of the simulated annealing algorithm at any time after

initialization and enter into a wait state by clicking the mouse pointer in the menu window. When in the

loop, TimberWolfMC will wait for the user to click on one of the top menu fields in the menu window.

The pulldown menu for that entry in the menu window will then become visible. The user then clicks in

89

the desired box for the desired option. TimberWolfMC will execute the option and return to the graphics

wait loop. To continue the program and leave the wait loop, the user must click on the Control menu

heading, and then click on the Continue Pgm entry. The user may cancel any menu by hitting the

Cancel box in that menu.

Figure 19.4.1 shows the contents of all the pulldown menus. Below we explain the meaning of the

menu items.

Control Edit Draw Parameters

Edit Cell

Fix Cell

Fix Cell but Rot.

Move Cell

Cell Neighborhood

Group Cells

Cancel

Tell Point

Continue Pgm

Dump Graphics

Close Graphics

Auto Redraw

Colors

Graphics Update

Fullview

Redraw

Cancel

Translate

Zoom

Draw Bins

Draw Wiring Est

Draw Neighborhood

Draw Nets

Draw Labels

Draw Pins

Cancel

Draw Border

Draw Globe Areas

Draw Single Net

Change Aspect Ratio

Cancel

Graphics Wait

Menu Window

Figure 19.4.1. TimberWolfMC graphical menus.
Control Menu

{Auto Redraw On | Auto Redraw Off} - toggles between automatic redraw when part of the

screen has been covered (on) and suppresssion of this feature (off).

Close Graphics - at any time the user can close the windows and return to batch mode.

Colors - individual colors may turned off or on using a dialogbox.

Continue Prog. - breaks the graphics wait loop and continues execution of the program.

Dump Graphics - dumps the contents of the screen to files in the directory defined by the

environment variable DATADIR defined in the current cshell. The Draw program can be used to

display this data at a later date.

Fullview - returns the user to full view of the main window.

{Graphics Update On | Graphics Update Off} - toggles between automatic redraw after each

adjustment of the cost function parameters (on) and the inhibition of the redraws (off). Interrupt

capability remains available in this mode.

Redraw - refresh the display.

Tell Point - returns the user coordinate under the mouse pointer when any mouse button is clicked

in the main window.

Translate - performs a reorigin of the main window. The coordinate under the mouse pointer when

any mouse button is clicked in the main window will become the new center of the main

window.

Zoom - allows the user to zoom in or out to any part of the screen. The zoom (in) area is

accomplished by either picking the lower left and upper right points of the zoom rectangle or by

entering them in the message window. The points are entered as two integers separated by

90

commas, i.e. 20, 40 for the point (20,40). Note: the pointer must be in message window to

enter points through the keyboard. If the points are entered in the reverse order (upper right,

lower left), a zoom out will be performed.

Edit Menu

Cell Neighborhood - set the neighborhood for the selected cell. The cell's center will be

constrained to remain within the specified box. Use the mouse to pick the two corners of the

box.

Edit Cell - allows the user to edit a macro cell's attributes. Use the mouse pointer to select the

desired macro. A dialog box will appear on the screen. Currently, the user may set the xcenter,

ycenter, orientation, and valid orientations of the selected macro. If satisfied, hit the ACCEPT

button at the top of the dialog box; otherwise, hit the CANCEL button.

Fix Cell - fix the selected cell at its current location and fix its orientation to be the current

orientation.

Fix Cell but Rot. - fix the selected cell at its current location but allow orientation changes.

Group Cells - not implemented currently.

Move Cell - moves a selected cell to a new location. Use the mouse pointer to establish a

reference point on the selected cell. The cell will then follow the mouse pointer until the mouse

button is depressed at the desired location.

Draw Menu

{Draw Bins | Ignore Bins} - toggle for drawing the bins used during overlap calculation.

{Draw Border | Draw Tiles} - toggles between drawing the arbitrary rectilinearly shaped cell

(border) or the tile decomposition of the rectilinearly shaped cell.

{Draw Globe Areas | Ignore Globe Areas} - toggles between drawing the spaced needed for

routing as determined by the global router or not.

{Draw Labels | Ignore Labels} - toggle for drawing the labels for cells, edges, nets, etc.

{Draw Neighborhood | Ignore Neighborhood} - toggle for drawing the cell neighborhoods.

{Draw Nets | Ignore Nets} - toggle for drawing the nets of the design.

{Draw Pins | Ignore Pins} - toggle for drawing the pins of the design.

Draw Single Net - draws the minimum spanning tree for a single net. The net is specified by its

net number which is output in the circuitName.mpth file. To eliminate this net, either use

Draw Single Net to change to a new net or toggle Draw Nets to Ignore Nets.

{Draw Wiring Est | Ignore Wiring Est} - toggle for drawing the routing area estimated by

TimberWolfMC.

Parameters Menu

Change Aspect Ratio - changes the aspect ratio of the design. Type the new aspect ratio into the

message window. Make sure the mouse pointer is in the message window.

{Graphics Wait | No Graphics Wait} - toggle between stop for graphics loops and ignore

graphics loops.

91

2 0 . TIMBERWOLFSC - STANDARD CELL PLACEMENT AND GLOBAL ROUTING

2 0 . 1 . FUNCTION

After the configuration of the standard cell rows, the placement of the standard cells takes place

with the invocation of the TimberWolfSC program [SBS85] [SL87]. TimberWolfSC uses simulated

annealing to place the standard cells by minimizing the total interconnect length subject to timing

constraints. Since TimberWolfMC has determined the placement of the macro cells relative to the standard

cell clusters, we now take the positions of the macro cell pins as fixed and allow the standard cells to be

moved so to minimize the total interconnect length. TimberWolfSC also performs global routing, that is,

it assigns each net segment (pin-to-pin interconnection) to a particular channel on the chip subject to

interconnect length and congestion constraints.

2 0 . 2 . INPUT

The inputs to TimberWolfSC are the circuitName.cel, circuitName.par, and circuitName.net files

previously described in the TimberWolf input file section.

2 0 . 3 . OUTPUT

The output from TimberWolfSC are the circuitName.pl1, circuitName.pl2, and circuitName.pin file

described in the TimberWolf output file section.

2 0 . 4 . GRAPHICAL INTERFACE

Control Draw
Draw Blocks

Draw Single Net

Draw Single Cell Moves

Draw Pins

Cancel

Draw Stdcells
Draw Labels

Draw Nets

Tell Point

Continue Pgm

Dump Graphics

Close Graphics

Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Graphics Update

Colors

Control Menu

{Auto Redraw On | Auto Redraw Off} - toggles between automatic redraw when part of the

screen has been covered (on) and suppresssion of this feature (off).

Close Graphics - at any time the user can close the windows and return to batch mode.

Colors - individual colors may turned off or on using a dialogbox.

Continue Pgm - breaks the graphics wait loop and continues execution of the program.

Dump Graphics - dumps the contents of the screen to files in the directory defined by the

environment variable DATADIR defined in the current cshell. The Draw program can be used to

display this data at a later date.

Fullview - returns the user to full view of the main window.

92

{Graphics Update On | Graphics Update Off} - toggles between automatic redraw after each

adjustment of the cost function parameters (on) and the inhibition of the redraws (off). Interrupt

capability remains available in this mode.

Redraw - refresh the display.

Tell Point - returns the user coordinate under the mouse pointer when any mouse button is clicked

in the main window.

Translate - performs a reorigin of the main window. The coordinate under the mouse pointer when

any mouse button is clicked in the main window will become the new center of the main

window.

Zoom - allows the user to zoom in or out to any part of the screen. The zoom (in) area is

accomplished by either picking the lower left and upper right points of the zoom rectangle or by

entering them in the message window. The points are entered as two integers separated by

commas, i.e. 20, 40 for the point (20,40). Note: the pointer must be in message window to

enter points through the keyboard. If the points are entered in the reverse order (upper right,

lower left), a zoom out will be performed.

Draw Menu

{Draw Blocks | Ignore Blocks} - toggle for drawing the desired standard cell rows.

{Draw StdCells | Ignore StdCells} - toggle for drawing the row-based cells.

{Draw Labels | Ignore Labels} - toggle for drawing the labels for cells, edges, nets, etc.

{Draw Nets | Ignore Nets} - toggle for drawing the nets of the design.

{Draw Pins | Ignore Pins} - toggle for drawing the pins of the design.

Draw Single Net - draws the minimum spanning tree for a single net. The net is specified by its

net number which is output in the circuitName.pth file. To eliminate this net, either use Draw

Single Net to change to a new net or toggle Draw Nets to Ignore Nets.

{Draw Single Cell Moves | Ignore Single Cell} - toggles between drawing every accepted

move in the annealing process and suppression of this feature.

93

2 1 . TOMUS

2 1 . 1 . FUNCTION

Tomus (meaning cut in Latin) is our n-way circuit partitioning program. It is integrated in the

TimberWolf package and is a part of flow.part. In flow.part, TimberWolfMC finalizes the placement of the

macros and the I/O pads and also estimates the core area. Tomus follows from this point. Through the use

of the X11 graphics interface, the user can define the physical boundaries of n partitions, into which the

user desires to divide a large circuit to place and route hierarchically instead of a flat design. Simulated

annealing is used to find an optimal set of standard cell clusters in each of these n partitions. It minimizes

total wire length and optimizes the clusters based on capacity constraints, congestion and timing

constraints. In effect, Tomus has a sense of distance minimization and thus minimizes wire length and

critical paths in addition to pin-outs on external edges of partitions and satisfying capacity constraints. At

the end of the annealing process, Mickey is used to generate optimal routes of the nets of the cells. Tomus

generates I/O pads on the edges of all n partitions based on these routes. These are called pseudopads and

corresponding pseudopadgroups. Note, at this point the real I/O pads of the main circuit will also be

represented in terms of pseudopads on the external edges of the main circuit. The user can then interactively

call Genrows on each of the partitions to configure the standard cell rows. Each of the n partitions will be

treated as complete sub-cores at the end of this program. Each of the sub-cores will be placed and routed

using our standard cell placement and routing program (TimberWolfSC) , in parallel, using n workstations

over the network by PSC, the parallel scheduler for TimberWolf.

2 1 . 2 . INPUT

The input Files Tomus reads are circuitName.mdat and circuitName.mver generated from

TimberWolfMC and circuitName.cel, circuitName.ppar and circuitName.nets provided by the user. The

circuitName.ppar file is optional. As described in 5.1.4 the parameters used by Tomus can be set in the

circuitName.par file which will be then used as default values. But if the user wants to set it in the

circuitName.ppar file then the standard format of parameter files should be used as shown below:

fast integer

random.seed integer

rowSep float

slow integer

vertical_path_weight float

vertical_wire_weight float

The description of the above parameters are listed in 5.1.4.

2 1 . 3 . OUTPUT

The output files Tomus generates are:

 for i = 1 to n,

circuitName:i.par, circuitName:i.scel and circuitName:i.blk.

The above files are input files required to run TimberWolfSC to place and route standard cells in

each of the n partitions. Tomus also generates an circuitName.pout file which will record the current status

94

of Tomus, the runtime errors, the random seed used in the current run, and an update of the values of the

cost function at the end of each iteration of simulated annealing during partitioning.

2 1 . 4 . GRAPHICAL INTERFACE

 Tomus will enter graphics wait loops at various logical times during the program - after initial

clustering in the partitions, after simulated annealing finds the final clusters, after pseudopads are created,

and after Genrows has been called on all partitions. When in the loop, Tomus will wait for the user to

click on one of the top menu fields in the menu window. The pulldown menu for that entry in the menu

window will then become visible. The user then clicks in the desired box for the desired option. Tomus

will execute the option and return to the graphics wait loop. To continue the program and leave the wait

loop, the user must click on the CONTROL menu heading, and then click on the CONTINUE PGM entry.

The user may cancel any menu by hitting the CANCEL box in that menu.

Figure 21.4.1 shows the contents of all the pulldown menus. Below we explain the meaning of the

menu items.

Control Draw

Tell Point

Continue Pgm

Dump Graphics

Auto Redraw

Fullview

Redraw

Cancel

Translate

Zoom

Draw Partitions

Draw StdCells

Cancel

Draw Lines

Draw Nets

Draw Macros

Colors

Figure 21.4.1. Tomus graphical menus.

Control Menu

{Auto Redraw On | Auto Redraw Off} - toggles between automatic redraw when part of the

screen has been covered (on) and suppression of this feature (off).

Close Graphics - at any time the user can close the windows and return to batch mode.

Colors - individual colors may turned off or on using a dialogbox.

Continue Prog. - breaks the graphics wait loop and continues execution of the program.

Dump Graphics - dumps the contents of the screen to files in the directory defined by the

environment variable $DATADIR defined in the current cshell. The DRAW program can be

used to display this data at a later date.

Fullview - returns the user to full view of the main window.

Redraw - refresh the display.

95

Tell Point - returns the user coordinate under the mouse pointer when any mouse button is clicked

in the main window.

Translate - performs a reorigin of the main window. The coordinate under the mouse pointer when

any mouse button is clicked in the main window will become the new center of the main

window.

Zoom - allows user to zoom in or out to any part of the screen. The zoom (in) area is accomplished

by either picking the lower left and upper right points of the zoom rectangle or by entering them

in the message window. The points are entered as two integers separated by commas, ie. 20, 40

for the point (20,40). Note: pointer must be in message window to enter points through the

keyboard. If the points are entered in the reverse order (upper right, lower left), a zoom out will

be performed.

Draw Menu

{Draw Partitions | Ignore Partitions} - toggle for drawing the partitions created by the user.

{Draw Lines | Ignore Lines} - toggle for drawing all the cut lines of partition

{Draw Nets | Ignore Nets} - toggle for drawing the nets of the design.

{Draw Macros | Ignore Macros} - toggle for drawing the macros of the design if any.

{Draw StdCells | Ignore StdCells} - toggle for drawing the standard cells in clusters in the tiles

of partitions.

96

2 2 . REFERENCES

[CD88]. C. Sechen, and D. Chen, "An Improved Objective Function for Mincut Circuit Partitioning."

Proc. IEEE International Conference on Computer-Aided Design (1988): 502-505.

[CS90] D. Chen and C. Sechen, "Mickey: a Macro Cell Global Router." submitted to Int. Workshop on

Layout Synthesis, May 8-11, 1990, MCNC, Research Triangle Park, NC.

[Chi87] M. Chi, "An Automatic Rectilinear Partitioning Procedure for Standard Cell." Proc. 24th Design

Automation Conference (1987): 50-55.

[dFZ87] Ph. de Forcrand, and H. Zimmermann, "Timing-Driven Auto-Placement," Proc. Int. Conf on

Comp. Design (1987): 518-521.

[Gro89] P. Groeneveld, "On Global Wire Ordering for Macro-Cell Routing," Proc. 26th Design

Automation Conference (1989): 155-160.

[HNY86] P. Hauge, R. Nair, and E. Yoffa, "Circuit Placement for Predictable Performance." Proc. Int.

Conf. on Computed-Aided Design (1987): 88-91.

[KiGV83] S. Kirkpatrick, C. Gelatt and M. Vecchi, "Optimization by Simulated Annealing", Science

220, 4598, (May 13, 1983), 671-680.

[ML89] M. Marek-Sadowska and S. Lin, "Timing Driven Placement." Proc. Int. Conf. on Computed-Aided

Design (1989): 94-97.

[OI86] O. Yasushi, T. Ishii, et al., "Efficient Placement Algorithms Optimizing Delay for High-Speed

ECL Masterslice LSI's." Proc. 23rd Design Automation Conference (1986): 404-410.

[PSS88]. R. Putatunda, D. Smith, M. Stebnisky, C. Puschak, and P. Patent, "VITAL: Fully Automatic

Placement Strategies for Very Large Semicustom Designs." Proc. IEEE International Conference

on Computer Design: VLSI in Computers & Processors: (1988): 434-439.

[SBS85] C. Sechen, D. Braun, and A. Sangiovanni-Vincentelli, "ThunderBird: A Complete Standard Cell

Layout Package." IEEE J. of Solid-State Circuits 23/2 (1985): 410-420.

[SecS84] C. Sechen and A. Sangiovanni-Vincentelli, "The TimberWolf Placement and Routing Package",

Proc. 1984 Custom Integrated Circuit Conf., Rochester, NY, May 1984.

[SecS85] C. Sechen and A. Sangiovanni-Vincentelli, "The TimberWolf Placement and Routing Package",

IEEE J. of Solid State Circuits, April 1985.

[Sec88] C. Sechen, "Chip-Planning, Placement, and Global Routing of Macro/Custom Cell Integrated

Circuits Using Simulated Annealing." Proc. 25rd Design Automation Conference (1988): 73-80.

[Sec88b] C. Sechen, VLSI Placement and Global Routing Using Simulated Annealing, Kluwer Academic

Publishers (1988).

[SL87] C. Sechen and K. W. Lee, "An Improved Simulated Annealing Algorithm for Row-Based

Placement." Proc. of ICCAD (1987): 478-481.

97

2 3 . APPENDIX A - SYNTAX FOR THE CIRCUITNAME .CEL FILE

Below is the BNF followed by a list of reserved keywords for the circuitName.cel file. Note: the BNF may

contain more information than described in the manual due to ongoing research. All keywords are

capitalized in the BNF.

23.1. BNF for circuitName.cel file
start_file : core pads

| core

core : corecells

| corecells cellgroups

corecells : coretype

| corecells coretype

coretype : hardcell

| softcell

| stdcell

pads : padcells

| padcells padgroups

padcells : padcell

| padcells padcell

padgroups : padgroup

| padgroups padgroup

cellgroups : cellgroup

| cellgroups cellgroup

stdcell : cellname std_fixed mirror bbox stdgrppins

| cellname optional_list std_fixed mirror bbox stdgrppins

optional_list : option

| optional_list option

option : celloffset

| eco

| swap_group

| legal_block_classes

| initial_orient

98

hardcell : hardcellname custom_instance_list

| hardcellname fixed custom_instance_list custom_instance_list: custom_instance

| custom_instance_list instance custom_instance

custom_instance : corners class orient hardpins

| corners class orient

softcell : softname soft_instance_list

| softname fixed soft_instance_list

soft_instance_list : soft_instance

| soft_instance_list instance soft_instance

soft_instance : corners aspect class orient softpins mc_pingroup

| corners aspect class orient softpins

| corners aspect class orient

instance : INSTANCE string

padcell : padname corners cur_orient restriction sidespace hardpins

| padname corners cur_orient restriction sidespace

padgroup : padgroupname padgrouplist restriction sidespace

cellgroup : supergroupname supergrouplist class orient

| cellgroupname neighborhood cellgrouplist

hardcellname : HARDCELL string NAME string

softname : SOFTCELL string NAME string

cellname : CELL string string

neighborhood : NEIGHBORHOOD

INTEGER FROM xloc INTEGER FROM yloc

INTEGER FROM xloc INTEGER FROM yloc

| NEIGHBORHOOD FIXED

INTEGER FROM xloc INTEGER FROM yloc

INTEGER FROM xloc INTEGER FROM yloc

99

fixed : fixedcontext AT INTEGER FROM xloc INTEGER FROM yloc

| fixedcontext NEIGHBORHOOD

INTEGER FROM xloc INTEGER FROM yloc

INTEGER FROM xloc INTEGER FROM yloc

fixedcontext : FIXED

std_fixed : /* empty */

| initially fixed_type INTEGER FROM fixed_loc OF

BLOCK INTEGER

swap_group : SWAPGROUP string

celloffset : CELLOFFSET offset_list

offset_list : INTEGER

| offset_list INTEGER

eco : ECO_ADDED_CELL

legal_block_classes : LEGALBLKCLASS num_block_classes block_classes

num_block_classes : INTEGER

block_classes : block_class

| block_classes block_class

block_class : INTEGER

initial_orient : ORIENT INTEGER

initially : /* empty */

| INITIALLY

fixed_type : FIXED

| NONFIXED

| RIGIDFIXED

fixed_loc : LEFT

| RIGHT

mirror : /* empty */

| NOMIRROR

100

bbox : LEFT INTEGER RIGHT INTEGER BOTTOM INTEGER TOP INTEGER

xloc : STRING

yloc : STRING

padname : PAD string NAME string

padgroupname : PADGROUP string PERMUTE

| PADGROUP string NOPERMUTE

supergroupname : SUPERGROUP string NAME string

cellgroupname : CELLGROUP string NAME string

corners : CORNERS INTEGER cornerpts

cornerpts : INTEGER INTEGER

| cornerpts INTEGER INTEGER

class : CLASS INTEGER

orient : INTEGER ORIENTATIONS orientlist cur_orient

| ORIENTATIONS orientlist cur_orient

orientlist : INTEGER

| orientlist INTEGER

cur_orient : /* empty */

| ORIENT INTEGER

aspect : ASPLB FLOAT ASPUB FLOAT

softpins : softtype

| softpins softtype

softtype : pintype

| softpin

hardpins : pintype

| hardpins pintype

101

stdgrppins : std_grppintype

| stdgrppins std_grppintype

stdpins : std_pintype

| stdpins std_pintype

std_grppintype : pinrecord

| pinrecord equiv_list

| pinrecord unequiv

| pingroup

std_pintype : pinrecord

| pinrecord equiv_list

| pinrecord unequiv

pintype : pinrecord

| pinrecord equiv_list

pingroup : PINGROUP stdpins ENDPINGROUP

softpin : softpin_info siderestriction

| softpin_info siderestriction softequivs

softpin_info : SOFTPIN NAME string SIGNAL string opt_layer

pinrecord : PIN NAME string SIGNAL string layer INTEGER INTEGER

equiv_list : equiv

| equiv_list equiv

equiv : EQUIV NAME string layer INTEGER INTEGER

unequiv : UNEQUIV NAME string layer INTEGER INTEGER

softequivs : mc_equiv

| mc_equiv user_equiv_list

| user_equiv_list

mc_equiv : addequiv siderestriction

addequiv : ADDEQUIV

102

user_equiv_list : user_equiv

| user_equiv_list user_equiv

user_equiv : equiv_name siderestriction connect

equiv_name : EQUIV NAME string opt_layer

connect : /* empty */

| CONNECT

mc_pingroup : pingroupname pingrouplist siderestriction

| mc_pingroup pingroupname pingrouplist siderestriction

pingroupname : PINGROUP string PERMUTE

| PINGROUP string NOPERMUTE

pingrouplist : pinset

| pingrouplist pinset

pinset : string FIXED

| string NONFIXED

siderestriction : /* empty */

| RESTRICT SIDE side_list

side_list : INTEGER

| side_list INTEGER

sidespace : /* empty */

| SIDESPACE FLOAT

layer : LAYER INTEGER

opt_layer : /* empty */

| LAYER INTEGER

sideplace : STRING

restriction : /* empty */

| RESTRICT SIDE sideplace

padgrouplist : padset

| padgrouplist padset

103

padset : string FIXED

| string NONFIXED

supergrouplist : string

| supergrouplist string

cellgrouplist : string

| cellgrouplist string

string : STRING

| INTEGER

| FLOAT

23.2. Reserved keywords for circuitName.cel file
Note: TimberWolf is case sensitive.

TOKEN DEFINITION
ECO_ADDED_CELL ECO_added_cell
ADDEQUIV addequiv
ASPLB asplb
ASPUB aspub
AT at
BLOCK block
BOTTOM bottom
CELL cell
CELLOFFSET cell_offset
CELLGROUP cellgroup
CLASS class
CONNECT connect
CORNERS corners
ENDPINGROUP end_pin_group
EQUIV equiv
FIXED fixed
FROM from
HARDCELL hardcell
INITIALLY initially
INSTANCE instance
LAYER layer
LEFT left
LEGALBLKCLASS legal_block_classes
NAME name
NEIGHBORHOOD neighborhood
NOMIRROR nomirror
NONFIXED nonfixed
NOPERMUTE nopermute
OF of
ORIENT orient
ORIENTATIONS orientations
PAD pad
PADGROUP padgroup
PERMUTE permute
PIN pin
PINGROUP pin_group
RESTRICT restrict

104

RIGHT right
RIGIDFIXED rigidly_fixed
SIDE side
SIDESPACE sidespace
SIGNAL signal
SOFTCELL softcell
SOFTPIN softpin
STDCELL stdcell
SUPERGROUP supergroup
SWAPGROUP swap_group
TOP top
UNEQUIV unequiv

105

Definitions of INTEGER, FLOAT and STRING (as defined by lex).
letter [!"#$%&'()*+,\-.\/a-zA-Z:;<=>?@\[\\\]^_`{|}~]
digit [0-9]
alphanum [!"#$%&'()*+,\-.\/a-zA-Z0-9:;<=>?@\[\\\]^_`{|}~]
new_line [\n]
blank [\t]
sign [-+]
exponent [eE]
dot [.]

C comment "/*""/"*([^*/]|[^*]"/"|"*"[^/])*"*"*"*/"
INTEGER {sign}?{digit}+
FLOAT {sign}?{digit}*{dot}{digit}*
FLOAT {sign}?{digit}+{dot}{digit}*{exponent}{sign}?{digit}+
STRING {digit}*{letter}{alphanum}* (if not a keyword)

