
Appendix A

Calculation of Linear Error in a

Transconductance Amplifier

A fundamental limitation of analog multipliers such as those used in the original imple-

mentation of the continuous wavelet transform modulator (Section 4.3.2) is the small linear range of

the output with respect to the differential input. This is also one of the primary reasons to consider

the use of log-domain filters, with their large-scale linearity, as a replacement for transconductance-

C filters (Chapter 3). Transconductance amplifiers operatedin subthreshold have inherent limits on

linear range. The approximate linear range of a simple transconductance amplifier can be calcu-

lated as shown below. Source degeneration and other methods[5] can extend the linear range by a

factor of two to perhaps ten. Above-threshold operation extends the linear range because the square-

law transistor behavior gives rise to a flatter amplifier transfer function than does the subthreshold

exponential behavior, but the range is nevertheless severely limited.

Figure A.1 shows a MOS differential pair as used in a simple transconductance amplifier.

The outputI2 � I1 is shown differentially, although normally the output is made single-ended by

mirroring I2 and subtractingI1 from it.

We use a somewhat simplified MOS subthreshold equation for drain current:Ids = I0e(�Vg�Vs)=Vt ; (A.1)

making other simplifying assumptions, such as perfectly matched input transistors,I2 � I1 = �I = I0e�Vs=Vt �e(�V2)=Vt � e(�V1)=V t� (A.2)I2 + I1 = Ib = I0e�Vs=Vt �e(�V2)=Vt + e(�V1)=V t� (A.3)

187

Ib

V2V1

I2I1

Figure A.1: Simple differential pair transconductance amplifier.

which can be combined to eliminate the common source voltageVs results in an expression for the

output: �I = Ib e(�V2)=Vt � e(�V1)=Vte(�V2)=Vt + e(�V1)=Vt! : (A.4)

As a function of differential input voltage�V = V2 � V1,�I = Ib 1� e�(��V)=Vt1 + e�(��V)=Vt! : (A.5)

This is a sigmoidal function, with odd symmetry about�V = 0, with asymptotes at�Ib. To find

linear error, first find the linear fit to this function at the origin:@�I@�V �����V=0 = 12 �Vt Ib (A.6)

such that a linear approximation to the output isIlin = �12 �Vt Ib��V: (A.7)

Linear error is Ilin ��I�I = ��V2Vt 1 + e�(��V)=Vt1� e�(��V)=Vt!� 1: (A.8)

This expression is independent ofIb. It is plotted in Figure A.2. From the plot it can be seen that

the function is within 10% linear to about�50 mV. By approximating the exponents in the above

equation, it can be shown that this is a fewVt not by coincidence, but by physical character.

188

−200 −150 −100 −50 0 50 100 150 200
0

20

40

60

80

100

120

140

160

180

(V2 − V1) (mV)

Li
ne

ar
 e

rr
or

 (
%

)

Figure A.2: Linear error in a simple transconductance amplifier as a function of the differential
input voltage.

189

Appendix B

M ATLAB Code for Sine Sequence

Generation

1 %-- ----------
% sequence.m
%-- ----------
% Searches for optimal single-bit string approximating a

5 % sinusoid. Algorithm is a stochastic partial search, in
% blocks of consecutive bits.
%
% Original Pascal program by Gert Cauwenberghs, 1994
% Converted to Matlab by Tim Edwards 1998

10 %-- ----------

%-- ----------
% Settings for this run
%-- ----------

15
period = 256; % should be power of 2, range from 4 to 2048
nOpt = 2; % block length optimized per iteration; <= 16
cap = 15; % capacitance ratio of filter, Cmax / Cmin
stages = 3; % number of cascaded 1st-order filter stages

20
%-- ----------
% Create the lowpass filter function
% This generates attenuation factors in the frequency domai n
% for each fft bin

25 %-- ----------

norm = 2 * pi / period;

190

factor = 2 * cap * (cap + 1);

30 ival = [0: (period / 2) - 1];
singleAtten = 1 ./ (1 + factor * (1 - cos(norm * ival)));
Atten = exp(log(singleAtten) * stages);

figure(1);
35 semilogy(Atten);

title(’Lowpass filter function’);

%-- ----------
% Derived values

40
maxPattern = 2ˆnOpt - 1;
nBits = period / 4;
xbase = [1: nBits]; % for graphing

45 % Initialize bit sequence and perturbative sequence

bits = ones(nBits, 1);

% Initial values for iteration
50

bestSNR = -100; % in dB, conservative starting point
iter = 0;

%-- ----------
55 % Iterate:

% Non-terminating loop---just print out results as they com e
%-- ----------

while 1,
60 iter = iter + 1;

% Compute optimal SNR:
% updates bitsF, assigns a random index, and performs
% partial exhaustive optimization with leftmost given

65 % index. Yields the minimum SNR under all combinations.

maxSNR = -100;
index = random(’Discrete Uniform’, nBits, 1, 1);

70 maxbits = bits;

191

for pattern = 1: maxPattern,

% Generate the perturbed bit sequence
75

bitsP = bits;

mask = 1;
for i = 1: nOpt,

80 if bitand(pattern, mask) == mask,
place = mod(i + index, nBits) + 1;
bitsP(place) = -bitsP(place);

end;
mask = bitshift(mask, 1);

85 end;

% Generate the reverse of the bit sequence bitsP()

bRev = bitsP(length(bitsP):-1:1);
90

% Generate the full sequence from its quarter parts and
% compute the SNR after filtering with Atten().

CData= abs(fft([bitsP’ bRev’ -bitsP’ -bRev’], period));
95 Raw = CData(1:length(CData)/2);

Amp = Raw .* Atten;

% "Signal" is the Fundamental harmonic
% "Noise" is all the other harmonics

100
Signal = Amp(2);
Noise = sum([Amp(1) Amp(3:length(Amp))]);

if Signal <= 0,
105 Signal = 1e-30;

end;

SNRtrial = -20 * log10(Noise / Signal);

110 if SNRtrial > maxSNR,
maxSNR = SNRtrial;
maxbits = bitsP;

end;
end;

115

192

if maxSNR > bestSNR,
bestSNR = maxSNR;
bits = maxbits;
fprintf(’iteration #%d: SNR = %f\n’, iter, bestSNR);

120 fprintf(’bit pattern: ’);
for i = 1: nBits,

fprintf(’%1d’, (bits(i) > 0));
end;
fprintf(’\n’);

125
% Plot the FFT outputs for this iteration

figure(2);
semilogy(xbase, Raw(1:length(xbase)), ’bx’,...

130 xbase, Amp(1:length(xbase)), ’ro’);
end;

end;

%-- ---------

B.1 Commentary

This code is completely self-contained, and for the most part self-explanatory. It attempts

to find a sequence ofn bits, wheren is a power of 2, which best represents a sine wave. The bulk

of the processing is taken care of by the Matlab built-in FastFourier Transform (FFT) in line 93.

The iteration loop (line 58) does not terminate but prints out the bit sequence (lines 112 to 120)

whenever it reaches a new minimum.

The algorithm, which has no proof of convergence and is not inany way guaranteed

to find a global minimum, performs an exhaustive search over asubset of bits within the target

sequence. The position of the subsequence is randomly determined (line 67), with the subsequence

itself being a loop size ofmaxPattern , calculated from the given number of subsequence bits

nOpt in line 40. The inner loop exhaustively searching the space of bit patterns in the subsequence

(0 to maxPattern � 1) comprises lines 71 to 110. Only one quarter of the sequence, bitsP ,

needs to be generated directly from the current best sequence and the current subsequence pattern.

The remaining three-quarters of the sequence are formed by reversing the sequence (line 88) and

negating both the original and reversed sequences (line 93,where the total sequence is constructed

193

out of its parts as it is passed to the FFT function).

The lowpass filter function which determines the output after lowpass filtering can be

applied in the frequency domain. Knowing that the sequence is periodic and therefore its FFT is

discrete, consisting of only the harmonics of the sequence period, it is only necessary to know by

what factor the lowpass filter function attenuates each of these harmonics. Thus the filter function

may be computed once at each of the harmonics out to some sufficiently high harmonic and stored

as array of attenutation factors. This filter computation takes place in lines 20 to 31.

The code could be modified to search for optimal bit patterns representing any arbitrary

function by applying an appropriate lowpass filter and comparing the resulting FFT to the FFT of

the original function. This has not been attempted, though,and its behavior with regard to becoming

trapped at local minima is unknown.

194

Appendix C

Template Correlation Algorithm with

Time Differentiation

The algorithm for template correlation presented in Chapter 4 uses a computation of the

pairwise difference between neighboring channels to transform the input and template into a zero-

mean representation, from which a binary form may be easily extracted for either or both as required

by the implementation.

In addition to frequency channel difference calculations,another way to put the input and

template in to an easily quantizable form is a time differentiation. In the time-sampled system, this

amounts to taking the difference between successive samples of the input or neighboring time bins

of the template. Time differentiation did not prove to be especially effective by itself for acoustic

transient classification, but in combination with channel difference computations, it can increase

overall system robustness, and may also be useful by itself for certain classification tasks. Its form

is especially efficient for hardware implementation, and itis the method used for the first prototypes

of the mixed-mode VLSI transient classifier system.

The input is treated in the same manner as it is for the channeldifferencing system:x[t;m] = y[t;m]� + MXk=1y[t; k] ; (C.1)

where the constant value� suppresses noise during quiet intervals in the input.

195

We take the time difference between successive samples of the input on each channel and

multiply it by the corresponding template value, which itself is computed from the original template

value of the baseline algorithm by taking the difference of values between neighboring time bins.

After this step, both input and template have a zero-mean form. We can then quantize the template

values by replacing each with itssign, indicating whether the energy is expected to be rising or

falling at each time sample:cz[t] = MXm=1 NXn=1(x[t� n;m]� x[t� n� 1;m]) p0z[n;m] (C.2)

where p0z[n;m] = sign(pz[n;m]� pz[n� 1;m]): (C.3)

Moving from a positive-valued, magnitude-encoding input and template to a differential

form has no effect on classification performance, although it complicates the algorithm by intro-

ducing negative values on both sides and requiring four-quadrant multiplications. Rendering each

template value binary has a negligible effect on classification performance. Binarization without dif-

ferentiation severely degrades system performance, and interestingly, system performance suffers

dramatically if the input is made binary but the templates are kept continuous valued [56].

When the input is transformed by a time differencing operation, it is possible to rearrange

the correlation equation and move the differencing operation so that it becomes the final processing

step. By noting that the time difference commutes with the summation, we can write Equation (4.1)cz[t] = MXm=1 NXn=1x[t� n;m] p0z[n;m] (C.4)� MXm=1 NXn=1x[(t� 1)� n;m] p0z[n;m]:
If we let c0z[t] = MXm=1 NXn=1 x[t� n;m] p0z[n;m]; (C.5)

then cz[t] = c0z[t]� c0z[t� 1]: (C.6)

Commuting the time difference operation to the end has several distinct advantages for

hardware implementation:

196

1. We need to compute only one time difference rather thanM differences (one for each fre-

quency channel).

2. Architecturally, the algorithm is less affected by device mismatch when computing the output

based on the difference of successive outputs rather than the absolute value of the output.

3. Most importantly, since the inputsx are rectified, the productxp0 (whenp0 is binary [0; 1]
is always positive and equals eitherx or zero, which allows us to conveniently implement

the entire convolution as an array of simple on/off current switches carrying current in one

direction only.

Figure C.1 shows the system as described, where each template value is a single bit con-

trolling a switch (multiplexer) which adds either zero or the unidirectional current input to the sum.

The bucket brigade device is responsible for accumulating the summed current over time, and a

simple switched capacitor circuit takes the difference at the output.

Σ
0

Σ
0

Σ
0

z−1Σ

. . .

(2 ms)

0

Σ
0

Σ
0

Σ
0

z−1Σ

. . .

(2 ms)

0

Σ
0

Σ
0

Σ
0

z−1Σ

. . .

(2 ms)

0

Σ
0

Σ
0

Σ
0

z−1Σ

. . .

(2 ms)

0

Σ. . .

. . .

. . .

. . .

c[t]

−

+

n = 1 n = 3n = 2 n = N

p′z[2,M]

x2

xM

x1

y2

y1

yM

N
or

m
al

iz
er

. . .
. . .

. . .

θ

p′z[N,M]

p′z[3,1]p′z[1,1] p′z[N,1]

p′z[2,2]p′z[1,2] p′z[3,2]

p′z[3,M]p′z[1,M]

p′z[2,1]

p′z[N,2]

c′z[t]

Figure C.1: Block diagram of the temporal current correlator, using time-differencing operations on
the input.

197

C.1 Proof of validity of the pipelined architecture

This is a short proof which verifies that the proposed pipelined architecture produces a

correlation result which is exactly equivalent to the result of the non-pipelined correlation.

The pipelined architecture follows the ruleset presented in Chapter 4, Section 4.2.1, and

repeated here for clarity:q[n; t] = q[n� 1; t� 1] + MXm=1 x0[t;m] p0z[n;m] 8n 6= 1 (C.7)q[1; t] = MXm=1 x0[t;m] p0z[1;m] (C.8)cz[t] = q[N; t� 1] (C.9)

Now expand out the final correlation resultcz[t]:cz[t] = q[N; t� 1] (C.10)= q[N � 1; t� 2] + MXm=1 x0[t� 1;m] p0z[N;m] (C.11)= q[N � 2; t� 3] + MXm=1 x0[t� 2;m] p0z[N � 1;m]+ MXm=1 x0[t� 1;m] p0z[N;m] (C.12)

...= q[1; t�N] + MXm=1 x0[t�N + 1;m] p0z[2;m]+ MXm=1 x0[t�N + 2;m] p0z[2;m] + : : : + MXm=1 x0[t� 1;m] p0z[N;m] (C.13)= MXm=1 x0[t�N;m] p0z[1;m] + MXm=1 x0[t�N + 1;m] p0z[2;m] (C.14)+ MXm=1 x0[t�N + 2;m] p0z[3;m] + : : : + MXm=1 x0[t� 1;m] p0z[N;m] (C.15)

Now we can collect the terms back under a summation overn:cz [t] = NXn=1 MXm=1 x0[t�N + n� 1;m] p0z[n;m] (C.16)

198

This is the original correlation equation, although the indices forx0 andp0 do not match

up one-to-one; as noted in the text, the template values mustbe reversed from right to left to make

the template for the pipelined architecture equivalent to the original template. That is,p0z[n;m]
becomesp0z[N � n+ 1;m] for all n, andcz[t] = NXn=1 MXm=1 x0[t�N + n� 1;m] p0z[N � n+ 1;m] (C.17)

With a change of variablesn! N � n+ 1 (n countsN to 1 rather than1 toN):cz[t] = NXn=1 MXm=1 x0[t� n;m] p0z[n;m] (C.18)

which is the original correlation equation.

The time-differential correlator circuit thus requires only one bucket-brigade device and

avoids the problem of matching. Matching is, in fact, quite good due to the differential output which

compares the difference between the values on the bucket brigade output node at successive time

samples. The differential measurement reduces errors due to systematic offsets in the bucket brigade

output. A simple switch-cap circuit which computes the timedifference is shown in Figure C.2.

VoutC1

C2

S1

Vref = 1/2 Vdd

Vin

(bucket brigade) (differential)

−

+
−

+

Figure C.2: Switch-cap time-differencing circuit.

199

Vdd

VddVdd

. . .

Accumulate

Cell [1,1]

A9

Pulse (φ3)

A4

Write

Cell [0,1]

Cell [0,0] Cell [1,0]

φ1

64 × 16 memory array

. . .

Vgg

Bucket

. . .

. . .

Column Select

φ2

I/Vselect

. . .

A5 A6

Inputs

Bucket

Vdd A3

A0

A1

A2

A7 A8

R
ow

 Select
Vdd

Vdd

. . .

V, Iin (1)

V, Iin (0)

. . .

Vdd

. . .
. . .

. . .

. . .

. . .

. . .

Vcasc
. . .

9/7

9/2

4/2

9/7

9/2

7/2

7/4 7/4

7/3

4/2
4/3

bit in

Vdd

. . .
. . .

. . .

bit0bit0 bit1bit1

−
+

−
+

c′z[t]

C1

C2

S1

Vref

φ1

Output valid

2ms

φ2

S1

Vdd

−
+ cz[t]

BBD Signal Timing

Drivers

Brigade

1-bit template cell

Figure C.3: Time-differencing correlation architecture.

200

Appendix D

C-code fragment from simulation of the

Acoustic Transient Processor frontend

filterbank

1 /*--- -------*/
/* frontend.c */
/* A modification of the original frontend.f program. */
/*--- -------*/

5 /* This program computes the bandpass filter and */
/* detector outputs for PCM input data files. */
/* The file determined by the command line filename */
/* is sequentially read for the names of speech files */
/* to be converted. */

10 /*--- -------*/

#include "atp.h"
#include "defines.h"
#include <stdio.h>

15 #include <fcntl.h>
#include <string.h>
#include <math.h>
#include <sys/types.h>
#include <sys/wait.h>

20
#define abs(a) ((a) < 0 ? -(a) : (a))
#define max(a,b) ((a) < (b) ? (b) : (a))
#define min(a,b) ((a) < (b) ? (a) : (b))

201

#define sign(a) ((a) < 0 ? -1 : 1)
25

/*--- --------*/
/* External variable declarations */
/*--- --------*/
/* itime = current sample */

30 /* itimen1, itimen2 = last sample */
/* filtdata = bandpass-filtered data */
/* lpfiltdata = time-averaged filter data */
/* normdata = peak-detector + time-averaged output */
/* samprate = sample rate of input */

35 /* filterfreq = filter center frequency values */
/* abcs = filter coefficients */
/* bfiltdata = intermediate bandpass filter results */
/* lfiltdata = intermediate lowpass filter results */
/* minout, maxout = peak-detector minimum and maximum */

40 /*--- --------*/

extern long itime, itimen1, itimen2;
extern float *filtdata[NFILTERS];
extern float *lpfiltdata[NFILTERS];

45 extern float *normdata[DETS];
extern short *shortpcm;
extern int samprate;

float filterfreq[NFILTERS];
50 float abcs[6][NFILTERS];

float bfiltdata[3][NFILTERS];
float lfiltdata[4][NFILTERS];

55 float minout[NFILTERS], maxout[NFILTERS];

/*--- -------*/
/* Function for generating filter center frequencies */
/*--- -------*/

60 /*-------------------------*/
/* Filter coefficients: */
/* Bandpass b0 = abcs[0] */
/* Bandpass b2 = abcs[1] */
/* Bandpass a1 = abcs[2] */

65 /* Bandpass a2 = abcs[3] */
/* Lowpass b = abcs[4] */
/* Lowpass a = abcs[5] */

202

/*-------------------------*/

70 void makefilters()
{

short nfilt;
float X, Y, x1;
double nn = 1.0 / (double) (NFILTERS - 1);

75 double K = (TOPFREQ - BOTFREQ) / STEPFREQ;

/* The equation for X has no symbolic solution, so */
/* compute the coefficient X by iteration. */
/* Note that X is generally close to 1 but 1 is also a */

80 /* solution of this equation, so we’ll start above 1 */
/* and iterate downward to the solution. */

X = 2.0;
do {

85 x1 = X;
X = (float) exp(nn * log(1.0 + K * (double)(X - 1)));

} while ((x1 - X) > 0.000001);

Y = STEPFREQ - BOTFREQ * (X - 1);
90

filterfreq[0] = BOTFREQ;

for (nfilt = 1; nfilt < (NFILTERS + PREPROC); nfilt++)
filterfreq[nfilt] = filterfreq[nfilt - 1] * X + Y;

95 }

/*--- -----*/
/* Computer filter coefficients for each frequency band */
/*--- -----*/

100
void filtinit()
{

short nfilt;
float sfreq = SFREQ;

105 float Q, denominv, tau, tausq, tauQ;

makefilters();

/* for now, fixed-Q filters */
110 Q = 5.0;

203

for (nfilt = 0; nfilt < NFILTERS; nfilt++) {

/* compute filter cutoff and Q value */
115

tau = samprate / (3.14159 * filterfreq[nfilt]);

/* compute bandpass filter coefficients */

120 tausq = tau * tau;
tauQ = tau / Q;
denominv = 1 / (1 + tauQ + tausq);
abcs[0][nfilt] = tau * denominv;
abcs[1][nfilt] = -abcs[0][nfilt];

125 abcs[2][nfilt] = 2 * (tausq - 1) * denominv;
abcs[3][nfilt] = -(1 - tauQ + tausq) * denominv;

/* Compute lowpass filter coefficients. "sfreq" */
/* makes a graded cutoff on a geometric scale */

130
tau = samprate / (3.14159 * sfreq);
abcs[4][nfilt] = 1 / (1 + tau);
abcs[5][nfilt] = (tau - 1) / (tau + 1);
sfreq *= FGRAD;

135
/* initialize filter endpoints */

bfiltdata[1][nfilt] = bfiltdata[0][nfilt] = 0.0;
lfiltdata[0][nfilt] = 0.0;

140 lfiltdata[2][nfilt] = 0.0;

/* Initialize envelope-detection parameters */

minout[nfilt] = 0;
145 maxout[nfilt] = 0;

}
}

/*--- ----*/
150 /* Bandpass Filter-bank execution */

/*--- ----*/

void filterbank()
{

155 short nfilt;

204

for (nfilt = 0; nfilt < NFILTERS; nfilt++) {

/* 1st bandpass filter */
160

bfiltdata[2][nfilt] = bfiltdata[1][nfilt];
bfiltdata[1][nfilt] = bfiltdata[0][nfilt];

bfiltdata[0][nfilt] =
165 abcs[0][nfilt] * (float)shortpcm[itime]

+ abcs[1][nfilt] * (float)shortpcm[itimen2]
+ abcs[2][nfilt] * bfiltdata[1][nfilt]
+ abcs[3][nfilt] * bfiltdata[2][nfilt];

170 /* 2nd (cascaded) bandpass filter */

filtdata[nfilt][itime] =
abcs[0][nfilt] * bfiltdata[0][nfilt]

+ abcs[1][nfilt] * bfiltdata[2][nfilt]
175 + abcs[2][nfilt] * filtdata[nfilt][itimen1]

+ abcs[3][nfilt] * filtdata[nfilt][itimen2];
}

}

180 /*--- ------*/
/* Smooth with a 3rd-order (cascaded) lowpass filter */
/*--- ------*/

makesmooth()
185 {

short nfilt;
float ntau;

/* also for now, we don’t decimate data down to a new */
190 /* timescale based on the Nyquist rate of the data */

/* smoothing (i.e., samples at 2ms each) */

for (nfilt = 0; nfilt < NFILTERS; nfilt++) {

195 lfiltdata[1][nfilt] = lfiltdata[0][nfilt];
lfiltdata[0][nfilt] = abcs[4][nfilt]

* (abs(filtdata[nfilt][itime])
+ abs(filtdata[nfilt][itimen1]))
+ abcs[5][nfilt] * lfiltdata[1][nfilt];

205

200
/* filter the output 2x more, for 3rd-order result */

lfiltdata[3][nfilt] = lfiltdata[2][nfilt];
lfiltdata[2][nfilt] =

205 abcs[4][nfilt] * (lfiltdata[0][nfilt]
+ lfiltdata[1][nfilt]) + abcs[5][nfilt]
* lfiltdata[3][nfilt];

lpfiltdata[nfilt][itime] = abcs[4][nfilt]
210 * (lfiltdata[2][nfilt] +

lfiltdata[3][nfilt]) + abcs[5][nfilt] *
lpfiltdata[nfilt][itimen1];

}
}

215
/*--- -------*/
/* Simulate peak-peak detector in hardware version of ATP */
/*--- -------*/

220 #define TAUSCALE 0.1 /* frequency-to-drop ratio */

peakdet()
{

225 for (nfilt = 0; nfilt < NFILTERS; nfilt++) {
ntau = TAUSCALE * filterfreq[nfilt];

/* maximum peak find */

230 maxout[nfilt] -= ntau;
if (filtdata[nfilt][itime] > maxout[nfilt])

maxout[nfilt] = filtdata[nfilt][itime];

/* minimum peak finder */
235

minout[nfilt] += ntau;
if (filtdata[nfilt][itime] < minout[nfilt])

minout[nfilt] = filtdata[nfilt][itime];

240 lpfiltdata[nfilt][itime] =
maxout[nfilt] - minout[nfilt];

}
}

206

245 /*--- ------*/
/* compute L-1 Norm and normalization channel */
/*--- ------*/

computenorm()
250 {

short nfilt;
float nsum = NCHAN;

for (nfilt = 0; nfilt < NFILTERS; nfilt++)
255 nsum += lpfiltdata[nfilt][itime];

for (nfilt = 0; nfilt < NFILTERS; nfilt++)
normdata[nfilt][itime] = NORMTO

* (lpfiltdata[nfilt][itime] / nsum);
260

normdata[NFILTERS][itime] = NORMTO * (NCHAN / nsum);
}

/*--- -----*/

D.1 Commentary

The software simulation of the ATP frontend filterbank processor sufficed for tests of the

ATP correlator in the absence of a hardware frontend processor. It is a direct implementation of the

intended function of the hardware. Filter transfer functions have been converted from the continuousj! frequency domain into the discrete-timez-domain using bilinear transforms.

The channels of the bandpass filterbank can have either a mel-scale or exponential center

frequency distribution (90 to 92). Routinemakefilters() facilitates the computation by de-

termining the frequency spacing from the parametersTOPFREQ, BOTFREQ, andSTEPFREQ. The

coefficients of the recursion have no symbolic solution and so are determined iteratively (lines 80

to 88).

Routinefiltinit() (line 98) determines the coefficients of thez-domain IIR filters

from the center frequency distribution and the designated constantQ value.

Routinefilterbank() (line 152) performs a single time sample computation of the

filters, retaining the internal values for subsequent computations. In keeping with the hardware spec-

207

ifications of Chapter 3, Section 3.4, there are two cascaded bandpass filters. They are followed by

rectification and smoothing, which can either take the form of the signal full-wave rectifier followed

by lowpass filtering (routinemakesmooth()) or the peak-peak detector (routinepeakdet()).

All outputs are subject to L-1 normalization across all channels in routinecomputenorm() , with

the� value from Equation (4.2) provided byNCHAN.

208

Appendix E

C-code fragment from simulation of the

ATP correlator

1 /*--- -------*/
/* template classifier */
/*--- -------*/

5 #define MIN(a,b) ((a) < (b)) ? (a) : (b)

/*--- -------*/
/* correlate() -- correlates template with sample */
/*--- -------*/

10
float correlate(float *template, float *data, int numchan s,

long samples)
{

float dot = 0.0;
15 int i, j;

for(j = 0; j < samples; j++) {
for(i = 0; i < numchans - 1; i++) {

dot += (*template++) * (*data++);
20 }

template++;
data++;

}
return dot/samples;

25 }

209

/*--- ------*/
/* correlate_dt() -- correlates template with data */
/*--- ------*/

30
float correlate_dt (float *template, float *data,

int numchans, long samples)
{

float dot = 0.0;
35 float t0, t1, d0, d1;

int i, j, bit;

for (j = 0; j < samples - 1; j++) {
for (i = 0; i < numchans; i++) {

40 t1 = *(template + numchans);
t0 = *template++;
d1 = *(data + numchans);
d0 = *data++;
dot += ((t1 - t0) > 0) ? (d1 - d0) : 0;

45 }
}
return dot;

}

50 /*--- -------*/
/* correlate_old() -- correlates template with data */
/*--- -------*/
/* This is according to Fernando’s original code, but */
/* repaired to skip the normalization channel and not to */

55 /* wrap around from top to bottom channel. */
/*--- -------*/

float correlate_old(float *template, float *data,
int numchans, long samples)

60 {
float dot = 0.0;
float t0, t1, d0, d1;
int i, j;

65 for (j = 0; j < samples; j++) {
for (i = 0; i < numchans - 2; i++) {

t1 = *(template + 1);
d1 = *(data + 1);

70

210

t0 = *template++;
d0 = *data++;

dot += (t1 > t0) ? d1 : d0;
75

/* dot += (t1 > t0) ? (d1 - d0) : 0; */
/* dot += (t1 - t0) * (d1 - d0); */

}
data++;

80 template++;
}
return dot;

}

85 /*--- -------*/
/* correlate_new() --- correlates template w/data */
/*--- -------*/

float correlate_new(float *template, float *data,
90 int numchans, long samples)

{
float dot = 0.0;
float t0, t1, t2, d0, d1, d2;
int i, j;

95
for(j = 0; j < samples - 1; j++) {

for(i = 0; i < numchans - 2; i++) {

t0 = *(template + numchans);
100 t1 = *template++;

t2 = *(template + numchans);
d0 = *(data + numchans);
d1 = *data++;
d2 = *(data + numchans);

105 dot += ((t1 + t2 - 2 * t0) > 0) ?
(d2 + d1 - 2 * d0) : 0;

}
data += 2;
template += 2;

110 }
return dot;

}

/*--- -------*/

211

115 /* Classification algorithm */
/*--- -------*/

int classify(FILEHEADER *fh, NEWSEGMENT *sh,
GENERAL_RECORD *record)

120 {
int class, bestclass;
float *data, *template, dot;
long int j, samples;
int i, numchans;

125 float maxdot;
class = 0;
numchans = fh->numchans;
maxdot = 0;

130 while (templates[class]) {
data = record->rec.flt;
template = templates[class];

/* samples = MIN(samples, 64); */
samples = MIN(sh->samples, template_samples[class]);

135 dotprod[class] = correlate(template, data, numchans,
samples);

if(dotprod[class]>maxdot) {
maxdot = dotprod[class];

140 bestclass = class;
}
class++;

}
return bestclass;

145 }

/*--- ------*/

E.1 Commentary

This code fragment is the central part of the ATP correlator simulations. The entire pro-

gram,classify.c , originally written by Fernando Pineda, takes input from the database gener-

ated from the HEEAR chip, and performs a “leave-one-out” cross-validation loop over all of the

recorded transient examples.

The correlation is called from routineclassify() , line 113, which loops over all

212

classes and determines which class is the “winner” based on the maximum returned dot product.

Several versions of the correlation routine have been included here: Tests of variations of the al-

gorithm were performed by uncommenting the necessary partsof the code and calling the correct

correlation subroutine fromclassify() .

Line 128 is the original software simulation which allowed templates to be of variable

length, depending on the maximum length of the recorded examples of each class. Because the

hardware does not allow such flexibility, line 127 is a replacement which more accurately reflects

the hardware by limiting the number of time bins in each template to a specific value (shown here

set to 64).

The correlation routine at line 11 is the baseline algorithm, based on the direct multiplica-

tion of template and input. The routinecorrelate_dt() at line 30 returns a correlation between

the binary, time-differenced template and the continuous-valued, time-differenced input. Routine

correlate_old() at line 56 returns a correlation using channel differences,although several

variations are explored in the commented lines (lines 73 and74). Finally correlate_new()

(line 86) includes information from both the time difference and channel difference and calculates

a binary template value based on a zero-mean representationderived from both.

213

Appendix F

C-code fragment from the optimizer for

per-class gains in the ATP

1 /*--- --------*/

#ifdef CHANDIFF
#define NCHANS (channels - 1)

5 #else
#define NCHANS channels
#endif

/*--- --------*/
10

int channels, timebins, filters, classes;

double ***weights = NULL; /* weights for reconstruction */
double *gains = NULL; /* weights on output vector */

15
int quantize;

/*--- --------*/
/* Normalize the gain coefficients */

20 /*--- --------*/

void gainnorm()
{

int i;
25 double gsum = 0.0, gscale;

214

for (i = 0; i < filters; i++) {
gsum += gains[i];

}
30 gscale = (double)filters / gsum;

/* adapt toward the solution */

for (i = 0; i < filters; i++) {
35 gains[i] *= (0.5 + gscale * 0.5);

/* gains[i] *= gscale; */
fprintf(stdout, "%8.3f", gains[i]);

}
fprintf(stdout, "\n");

40 }

/*--- --------*/
/* Print the value of the minimization function. */
/* return column number with lowest value */

45 /*--- --------*/

double printerr(double **cgains)
{

int i, j, k;
50 double cval, sum = 0.0, lval;

for (i = 0; i < classes; i++) {
lval = gains[i] * cgains[i][i];
for (j = 0; j < classes; j++) {

55 if (j == i) continue;
sum += exp(gains[j] * cgains[j][i] - lval);

}
}
fprintf(stderr, "%8.3e ", sum);

60
return sum;

}

/*--- --------*/
65 /* print out cross-correlations of weight matrices */

/*--- --------*/

void printgains(double **cgains)
{

70 int i, j, k, t;

215

fprintf(stdout, "Weight matrix cross-correlations\n");

for (i = 0; i < filters; i++) {
75 for (j = 0; j < filters; j++) {

cgains[i][j] = 0.0;
for (k = 0; k < channels; k++)

for (t = 0; t < timebins; t++)
switch (quantize) {

80
/* Quantized template and input */
case 2:

cgains[i][j] += gains[i]
* ((weights[j][k][t] > 0) ? .01 : -.01)

85 * ((weights[i][k][t] > 0) ? .01 : -.01);
break;

/* Quantized template only */
case 1:

90 cgains[i][j] += gains[i]
* weights[j][k][t]
* ((weights[i][k][t] > 0) ? 1 : -1);

break;

95 /* Continuous-valued input & template */
default:

cgains[i][j] += gains[i]
* weights[j][k][t]
* weights[i][k][t];

100 break;
}

fprintf(stdout, "%5.3f ", cgains[i][j]);
}
fprintf(stdout, "\n");

105 }
}

/*--- --------*/
/* compute relative gain on each template output */

110 /*--- --------*/

#define alpha 0.1
#define ahpla 0.9

216

115 findgains()
{

int i, j, k, t;
int bcount;
double **cgains;

120 double tout, newgain, nsum, dsum, ndiff;
double nngain, nndiff;
double newerr, lasterr;

cgains = (double **)malloc(filters * sizeof(double *));
125 for (i = 0; i < filters; i++)

cgains[i] = (double *)malloc(filters * sizeof(double));

fprintf(stdout, "\nPer-template gain calculations:\n\n ");

130 for (i = 0; i < filters; i++) {
gains[i] = 1.0;

}
printgains(cgains);
lasterr = printerr(cgains);

135
fprintf(stdout,

"Computing gains by minimizing cross-correlations.\n");

for (i = 0; i < filters; i++) {
140 gains[i] = 1.0;

}
do {

for (i = 0; i < filters; i++) {
nngain = 1.0;

145 bcount = 0;
do {

nsum = 0.0;
dsum = 0.0;
for (j = 0; j < filters; j++) {

150 if (j == i) continue;
dsum += exp(gains[j] * cgains[j][i]);
if (cgains[i][j] > 0)

nsum += cgains[i][j]
* exp((nngain * cgains[i][j])

155 - (gains[j] * cgains[j][j]));
}
dsum *= cgains[i][i];

217

/* move gain in the direction of the optimal */
160 /* value by a factor alpha */

newgain = alpha
* (-log(nsum / dsum) / cgains[i][i])
+ ahpla * nngain;

165 ndiff = fabs(newgain - nngain);
nngain = newgain;
bcount++;

} while(ndiff > 0.0001 && bcount < 10000);
if (bcount == 10000) break;

170
gains[i] = nngain;

}
fprintf(stdout, "\n");

175 /* Renormalize the gain coefficients */

gainnorm();

newerr = printerr(cgains);
180 nndiff = fabs(newerr - lasterr);

lasterr = newerr;

if (bcount == 10000) { /* failed to converge */
fprintf(stdout,

185 "Gain calculation failed to converge.\n");
for (i = 0; i < filters; i++) {

gains[i] = 1.0;
}
break;

190 }

} while (nndiff > 1e-8);

printgains(cgains);
195

/* free up allocated memory */

for (i = 0; i < filters; i++)
free(cgains[i]);

200 free(cgains);
}

218

/*--- --------*/

F.1 Commentary

This is a portion of the code used to independently confirm Fernando Pineda’s results

using a simulation of the frontend filterbank rather than theHEEAR chip output and operating in

continuous time rather than depending on a segmenter, the main point of which was to look for false

positives which might occur between presented examples.

This code fragment is the part of the program which determines gains for each class

in an attempt to optimize the classification accuracy by maximizing the difference among cross-

correlations of the class templates.

The main optimization loop has no proof of convergence and socannot be guaranteed to

find a solution; however, it seems to work well in practice.

Routinefindgains() is the main iterative loop which seeks to minimize an error func-

tion as described in Chapter 4, Section 4.3.6. The error function is computed in lines 141 through

155. The cross-correlationscgains[i][j] between templates are computed using the current

estimate of the per-channel gainsgains[i] within the functionprintgains() , lines 66 to

101.

The choice of error function does not compensate for one problem: If all gains are mul-

tiplied by a constant, the error measure does not change, which is reasonable since the system

accuracy does not change either. This extra degree of freedom allows the adapting gains to slowly

drift up or down. The functiongainnorm() , lines 22 to 38, keeps the gains centered around unity.

The routine moves the gains toward the desired mean rather than jumping there in a singe step to

avoid throwing the adaptation loop into a limit cycle.

Routineprinterr() finds a global estimate of the error function which the main loop

of the program uses both to report the status of the iterativeloop and to automatically determine

when the iterative process has converged.

219

