
Chapter 1

Introduction

1.1 Introduction

In the late 1980’s, as the computer revolution was getting into full swing, Carver Mead

wrote a book calledAnalog VLSI and Neural Systems[1] espousing a view of analog circuit de-

sign which was different from the generally accepted norm (which might be described as “better

amplifiers and D/A converters”). The underlying premise is that biological systems outperform

electrical/electronic systems by many orders of magnitudein terms of both compactness of design

and consumption of power resources. Loss of speed is compensated by massive parallelism of archi-

tecture, and precision is not compromised. Indeed, the raw computational power and often precision

[4] of many biomechanical and neurological systems is unparalleled.

The reasoning behind the dichotomy in power dissipation between biological and elec-

tronic computers is relatively simple. At one extreme, biological systems compete for resources

and the forces of natural selection drive them towards the extremes of processing power (smarter

is better) and energy efficiency (the least energy efficient creatures tend to be the first to starve).

These requirements are strongly interdependent, as the process of thinking requires considerably

more energy than, for instance, being a potted plant. But there are obvious competitive advantages

to being perceptive of one’s environment, perceptive of one’s condition, mobile and, at the top of the

heap, rational. But regardless of the tradeoff made betweenprocessing power and energy efficiency,

natural selection always ensures that in biological systems, one is continuously minimized with re-

spect to the other. Small size and compact design is a variable closely related to power efficiency,

as larger organisms consume more resources, but larger bodies support larger brain cases housing

more powerful brains.
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A digital system has what is known as “restoring logic.” The system is powered by posi-

tive and negative (ground) supplies which also represent the ideal logic values. Whenever a digital

operation occurs, a node capacitance is forced to the value of one of the power rails by charging

or discharging completely. At a glance, there is seemingly little difference between the discharging

capacitor of a digital operation and the rush of current through a sodium channel in a spiking neu-

ron. The difference is one of method, scale, dimension, and material. In the end, it is the material of

which electronic circuits are made that determines the ultimate constraints on scale and dimension.

As integrated electronic devices get smaller, power consumption per operation does drop by leaps

and bounds. But the operation of digital circuits demands that each circuit be able to maintain two

distinct states, and the particular nonlinearity of the transistor (exponential for bipolar devices and

also for MOS devices below the threshold voltage) requires avoltage margin to keep the binary

states distinct. Attempts to lower the transistor device threshold only shorten the voltage margin by

shifting the exponential curve downward, decreasing the dynamic power dissipated but increasing

the static power dissipated. For a circuit of a given size (number of transistors) and frequency, there

is an optimum threshold and power supply voltage (there is still much room for improvement in to-

day’s digital fabrication processes), which minimizes power consumption, but the fundamental limit

is imposed by the physical properties of the silicon p-n junction itself, and the power savings cannot

be continued indefinitely. For silicon circuits to get powerefficiency above this limit, a difference

in method is required. Analog processing is one way to go about it. If the system is continuous-

valued and not binary, then there is no need for restoring logic and the system can operate at rates of

power dissipation which are orders of magnitude below thoseof digital systems. Of course there is

a tradeoff in moving to low-power in the analog domain, and that is the presence of noise (thermal

noise, shot noise, and1=f noise), nonlinear distortion, mismatch, drift, slewing, parasitic inductive

and capacitive coupling, and temperature dependence. These unwanted effects have to be addressed

in every circuit design.

Today, however, as digital systems become increasingly fast and densely packed and de-

creasingly expensive (though expense reflects more the economy of scale than the cost of production

or operation), it is necessary to choose analog applications wisely. There is no point in creating an

analog system which will be outperformed by an equivalent digital (microprocessor or DSP) system

in a year or two when digital fabrication processes move to the next smaller feature size and system

designs move to a lower power supply standard. The incredible advances of CMOS fabrication

processes (as per Amdahl’s Law) [7] remain virtually unchecked as yet by their fundamental limits.

These advances and the prospect of their continuation have the tendency to reduce the subject of
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analog design to the margins, and even that typically meaning operational amplifier design, and A/D

(analog-to-digital) conversion. The modern engineer deals with the real world through a transducer

and an A/D, after which the sky’s the limit on signal processing possibilities. Except for simple

CMOS imagers and some newer applications based on capacitive sensors, transducers are the realm

of Microelectromechanical systems (MEMS) research and tend to require complicated or exotic

fabrication processes that are usually incompatible with analog CMOS or BiCMOS circuit layout.

Thus the sought-after application of “smart” analog-to-digital conversion, with sophisticated analog

processing occurring at the source on the analog signal transducer, remains elusive.

On the other hand, the problem of power consumption and heat dissipation works against

the prospect of digital systems increasing in size and complexity without bound. In addition, ultra-

low power circuits are becoming increasingly necessary as mobile applications increase in popular-

ity and use, especially in consumer electronics (mobile phones, laptop computers, GPS receivers),

but also in space electronics (micro-satellites, deep-space probes) military electronics, and med-

ical electronics (pacemakers, hearing aids). Power constraints determine the difference between

a battery life of hours and one of days, or one of monthsvs. one of years, or can mean the dif-

ference between a device which can operate exclusively off of solar power and one which needs

alternate sources of power. Micropower electronics keep digital watches running for years; this

kind of performance should and will be demanded of many more applications. Even for non-mobile

applications, power regulation and heat dissipation become major problems when electronics begin

consuming dozens of watts, forcing designers to find ways to cut back on power use.

Analog VLSI designers often are able to overcome some of the drawbacks of the power-

hungry digital domain by emulating biological processes inelectronic circuits which make optimal

use of the analog domain. Mimicking neurological processesin electronics is sometimes referred

to as “neuromorphic engineering” [2], a term which can be applied to processes on the level of

individual neurons up to entire systems based on psychophysical data, and which is irrespective of

the medium of implementation, be it analog custom integrated circuits, DSPs, microcontrollers, or

computer software. There is a seemingly endless debate as towhether the human brain is most

accurately described as a digital or analog signal processing system (it contains elements of both),

and while it is possible that quasi-digital, spike-based processing may be the ultimate solution to

approaching the efficiency and processing power of biological neural systems, as of now only spe-

cially designed analog systems come close to this goal. Neuromorphic systems have the capability

to couple massively parallel computation with low power consumption and a large degree of robust-

ness in the presence of both noise and mismatch or failure of components. Achieving this goal is a
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daunting but often greatly rewarding endeavor. This thesisexplores one small corner of the space of

neuromorphic engineering design: I hope that in addition toeducating the reader, it conveys a sense

of the scope of possibilities contained in the field, and the sense of excitement and exploration felt

by those whose research touches the neuromorphic engineering community.

I have directed my research, which began while I was in the Masters degree program

at Stanford, towards investigating methods in auditory signal processing which lend themselves to

implementation in analog hardware, specifically large-scale fabrication in silicon. A general goal

of all my projects, and of the research groups of which I have been a part, has been to examine

systems which are not easily implemented in a digital environment due to size, scalability, or power

constraints, and find systems in the analog or mixed-mode domain which perform the same task at

low power and high robustness without compromising performance. Typical methods include using

current-domain subthreshold circuits for ultra-low poweroperation [1, 3], and using translinear

circuits to compute many arithmetic functions of current and voltage in a minimal area [34]. These

methods, along with thoughtful system design, make efficient use of space on silicon. In order to

compare analog and digital systems fairly, it is criticallyimportant not to stop at merely simulating

these systems, but to fabricate and test them as well. Each system described in this thesis has been

put onto silicon and characterized by measurements made in the laboratory.

My contributions to the field of electrical engineering and associated fields include:� An analog architecture for implementing the Continuous Wavelet Transform using the method

of complex demodulation, and the use of a cascade of lowpass filters in conjunction with

complex demodulation to realize a Gaussian-shaped bandpass filter [17].� A mixed-mode architecture which used oversampling methodsto perform linear analog mul-

tiplications [20].� A mixed-mode architecture for a Continuous Wavelet Transform processor, demonstrating

the use of the oversampling method for sine wave generation and complex modulation and

achieving low power consumption [18, 21].� A method for synthesis of log-domain filter circuits, especially as relates to audio-frequency

applications [48].� Circuit architectures for current-mode audio-frequency filterbanks using log-domain filter

techniques [49].
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� A mixed-mode architecture for implementing efficient template correlation, especially for use

in conjunction with the frontend filterbank for acoustic transient classification [55, 56, 57].� Analysis and optimization of acoustic transient classification algorithms using template cor-

relation methods, and investigation of training methods for such classifiers [58].� Fabricated VLSI circuits for each of the indicated architectures, including results and mea-

surements which are detailed in this thesis, as well as test hardware and software which is

beyond the scope of the thesis to describe, but which has beenmade publicly available and

has been of benefit to many others.

Due to the variety of material encountered in my research, I have organized this disserta-

tion into four major topics:

1. Chapter 2. Mapping the time-frequency plane with efficient analog and mixed-signal compu-

tation: The Continuous Wavelet Transform Processor.

2. Chapter 3. Continuous-time, current-mode circuits for acoustic-band filterbanks: Log-Do-

main Circuits, Filter Design and Synthesis.

3. Chapter 4. Algorithms, architectures, and mixed-signalcircuits for pattern recognition using

template correlation: The Acoustic Transient Classifier.

4. Chapter 5. Methods for training the acoustic transient classifier, extensions and directions of

the research.
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1.2 Mapping the Time-Frequency Plane

The time-frequency plane is a powerful concept in signal processing [8, 13, 15]. All

acoustic signals can be represented as functions of both time and frequency; speech recognition and

acoustic pattern classification systems require that acoustic information be mapped into a function

of both time and frequency. In Chapter 2, I summarize the problem of mapping the time-frequency

plane, and show how different mappings can yield different information about acoustic signals.

A signal can be divided into discrete units (samples) which adequately describe the signal;

i.e., the original signal can be reconstructed from its component units. This is true only if all samples

cover the total area of interest (total bandwidth and timespan of the signal) in the time-frequency

plane, wherecoverageis determined by the area of uncertainty of each sample,�f�t � 12 ; (1.1)

the acoustic corollary of Heisenberg’s uncertainty principle in which matter waves are replaced by

acoustic pressure waves. Every sampled output of an acoustic signal-processing system can be

viewed as covering a small area in the time-frequency plane.The representation of the area of

support of a system as a rectangle with width�t and height�f is an idealization of real systems

which may be primarily localized in a small area of time-frequency space but spread well beyond

the boundaries. The Gaussian is in fact the only function satisfying the minimum�f�t area [8],

yet it is nonzero to infinity: a true Gaussian is in fact noncausal, but causal approximations to the

Gaussian profile have near-minimum area.

The two most common divisions of the time-frequency plane are theDirac mapand the

Fourier map[15], shown in Figures 1.1(a) and (b). The Dirac map corresponds to a sampled signal,

and the area covered by each sample is the frequency spread times the sample period. The Fourier

map comes from the Fourier transform, which divides the frequency plane into even parts. The

non-windowed Fourier transform assumes an infinite timespan for the signal, and therefore does not

have minimum area samples in the time-frequency plane.

Each of these methods yields different information: The Dirac map yields thebesttime

resolution but the worst frequency resolution; the Fouriermap achieves the best frequency resolution

at the expense of having the worst time resolution. Overview: Continuous wavelet decomposition

This view of the time-frequency plane naturally leads to ideas of ways to create time-

frequency maps which achieve the optimal tradeoff between time and frequency resolution. One of

these is thewavelet map(Figure 1.1(c)) [15]. An important property of the wavelet map is that the
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Figure 1.1: Some mappings of the TF plane.

filter center frequenciesfc are spaced exponentially, with the bandwidth of each filter proportional

to its center frequency. If we use a simple filterbank of bandpass filters to generate the wavelet map,

then to adequately capture the output in a sampled-data system we must sample each filter channel

at twice (i.e., the Nyquist rate of) the upper cutoff frequency of its transfer function. However, in

this architecture the upper cutoff is typically twice the value of the bandwidth, which results in an

output bandwidth which is larger than the input bandwidth. The wavelet decomposition, however,

describes atransform, so no information has been added to the system and it should not be necessary

to increase the bandwidth of the system. Preferably, the system should shift the frequency content

of each channel toward zero, allowing it to be sampled at the Nyquist rate corresponding to the

channel bandwidth rather than the channel upper cutoff frequency. Thus the total output bandwidth

is equal to the input bandwidth.

We adopted the method of shifting the center frequencyfc of the band to zero using

complex demodulation[9]. The result of this process is two orthogonal outputs each of which can be

sampled at twice the lowpass filter cutoff frequency. Re-modulation of the two outputs by the same

process is equivalent to bandpass-filtering the original signal. We can approximately reconstruct

the original input by applying this manipulation to each filterbank channel output and adding them

together.

The Gaussian function has the most compact representation in the time-frequency plane,

and so it forms the core filtering process of the Continuous Wavelet Transform processor. An

approximation to a half-Gaussian-shaped lowpass functionis quite easy to create using a series of
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simple lowpass filters in cascade: the total transfer function converges to a Gaussian function as the

cascade length is increased.

We have designed and fabricated a series of analog and mixed-signal chips to perform the

wavelet transform. Two major obstacles to overcome were determining 1) how to generate a sine

wave with low harmonic distortion and 2) how to implement a highly linear multiplier. We devel-

oped a robust system by using a hybrid analog and digital architecture [18, 20, 21]. We solved both

problems of the original design by using anoversampled binary representationof the modulating

sine wave [20].

1.2.1 Current-mode filterbanks

It is not always necessary to preserve phase information in order to perform acoustic

recognition and classification tasks. In such cases a simplefilterbank of bandpass filters may suffice,

with the outputs rectified and smoothed to yield an estimate of signal energy in a particular band

at a specific instant in time. In Chapter 3, I consider the problem of designing such a filterbank

usingcurrent-modecircuits as a frontend processor for the acoustic recognition system described

in Chapter 4. The filter transfer functions in a current-modefilterbank are the ratio of output to

inputcurrentrather than voltage. I chose a current-mode architecture partly because it is convenient

to interface to the backend systems, which are also current-mode circuits, but more importantly

because current-mode filters have a larger dynamic range (onthe order of106) than voltage-mode

circuits which have similar power-consumption and layout area. Subthreshold analog voltage-mode

filterbanks have been well-researched and well-developed [1, 5, 51], but remain subject to low

dynamic range.

Current-mode filterbanks, on the other hand, are only beginning to be extensively investi-

gated. Recent work on the relatively new subject oflog-domain filters[39, 47] has provided some

circuit designs and methods for current-mode filters. Working with circuit ideas from Philippe

Pouliquen and Wolfgang Himmelbauer, I developed a new method of generating log-domain filter

circuits given a transfer function, and fabricated some low-power BiCMOS designs on a test chip

which proved to implement the filter functions correctly. Figure 3.11 shows one bandpass filter

design.

A useful aspect of log-domain designs is that filter parameters such as center frequencyf0 and resonanceQ are controlled directly by bias currents, permitting the same circuit to be used

for each filter of the bank, with bias currents appropriatelyscaled for each one.
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1.2.2 Acoustic Transient Recognition

Simple patterns often can be successfully recognized (classified) by directly correlating

each input pattern with a stored template: compute the distance between each input and template

entry using an appropriate metric, sum the result over all components of the feature space, and

compare the totals among all templates to select a winner. This method is a linear classifier encoding

one separating hyperplane per template. For acoustic signal processing, the feature space is typically

a time-frequency map.

Speech signals are normally too complicated to enable a successful recognition system

using correlation, due to the necessity of coping with largevariance in pitch, timbre, and time

for the same target output.Acoustic transients, on the other hand, are signals which by definition

occur over very short periods of time (less than approximately 1/10 second). Examples of acoustic

transients are the sound of a handclap, a door closing, sonarechos, and certain events in speech

which occur on sub-phonetic time scales, such as the sudden bursts and silences associated with

hard consonants like ‘p’ and ‘t’. Time-frequency decomposition gives a relatively stable description

of an acoustic transient from instance to instance.

Together with Dr. Fernando Pineda, at the Johns Hopkins University Applied Physics

Laboratory (JHU-APL), we have experimented with acoustic transient recognition by correlating

time-frequency-mapped outputs with templates formed by averaging together examples of the tran-

sients from a training set [54, 55]. In addition, we have experimented with ways of reducing the

complexity of the computation and the amount of data stored in each template. The result is a

system which lends itself very nicely to efficient implementation in analog hardware [57].

We begin with a baseline algorithm which is the direct correlation between an input and a

template cz [ t ] = MXm=1 NXn=1x[t� n;m] pz[n;m] (1.2)

whereM is the number of frequency channels of the input,N is the maximum number of time

bins in the window (enough to cover the transient event at 1 to2 ms per bin),x is the array of input

signals split into frequency bands,pz is the matrix of template pattern values for patternz, andt
is the current time. This formula produces a running correlation cz [ t ] of the input array with the

templatez. A system implementing the correlation in this form requires an analog (or multibit, if

digital) storage forM �N values foreachtemplate, andM �N multiplications at every time step,

also for each template. The computational requirements areformidable: for example, a 10-template

classifier with a 16-channel filterbank frontend, operatingat 2 ms per time step and allowing approx-
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imately 1/10 second (64 bins at 2 ms) per template requires over 10 million multiplies per second.

This is feasible using dedicated software. However, we viewthe template correlation as a funda-

mental low-level task of potentially many kinds of acousticrecognition and classification systems,

and as such it should be made as simple, compact, and power-efficient as possible.

We simplified the correlation equation from the standpoint of analog hardware imple-

mentation through a series of steps, arriving at an algorithm with requirements for memory storage

reduced to a single bit per template value (thus,M � N bits per template) plusN analog val-

ues stored in a shift-and-accumulate register. The accuracy of the algorithm in classification tasks

remains little affected by the sparse encoding of information in the template.

1.2.3 Analog VLSI implementation of the transient classifier

Figure 4.7 shows a block diagram of the correlator architecture we developed. The details

of the circuits which implement the frontend section, normalizer, and correlator are explored in

Chapter 4. Simple memory circuits such as those found in RAM chips provide the binary template

storage. Currents from each channel input are switched ontoN common lines depending on the

template value for channelm and timen. Merging currents together performs the summation across

theM channels. Twobucket brigade devices(BBDs), circuits usually used for analog delay lines

in high-fidelity audio and other acoustic applications [60,62], perform summation across timen.

Summed currents are converted to a voltage on each bucket brigade node by integrating onto the

bucket brigade capacitor for a fixed period of time, and we compute the difference between the last

bucket brigade cell of the two BBDs with a simple switched capacitor circuit. The bucket brigades

are fully pipelined so that for each timet the system produces one complete correlation computation

at its output node.

We have made a simple estimate of power consumption based on detailed knowledge

about the circuit components used in the VLSI layout. This power consumption typically should be

less than 10 microwatts for each template. We expect a systemwith a large “vocabulary” of 200

transient events using the normal timestep of 2 ms to consumeless that 2 mW of power. This system

computes all correlations on all templates in parallel, andtherefore does not need to employ any

measures to reduce the search space of the solution; and it produces a complete correlation at every

timestep, so segmentation of the input is not necessary, though it may be desired for robustness,

particularly in instances where the transients are presented to the system in isolation.

I made an analysis of the performance of the algorithm in simulation under different archi-
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tectures. The architecture described above represents only one of a number of different possibilities.

First, any combination of input or template can be made binary or trinary. Second, although a zero-

mean transformation is the best way to get a simple decision boundary for choosing a binary value,

the choice of pairwise frequency channel differences is only one of many such transformations.

Other possibilities include time differences between samples, center-surround computation for each

frequency channel, or some combination of time and frequency differences. The architecture of

Figure 4.16 was chosen as the simplest representation maintaining acceptable performance on the

classification task. However, results of the analysis of different architectures showed that the use of

a channel difference computation in addition to a binary representation ofboth input and template

resulted in similar classification rates to the proposed mixed-mode architecture. A system with both

binary inputs and templates can be implemented entirely in the digital domain (except for the fron-

tend processing of the input prior to binarization). The optimal form of a binary-binary correlator

would be a custom digital architecture, using a parallel architecture similar to that proposed for the

analog-binary correlation. The slow speed at which the system operates (1 ms per sample) allows

the digital system to be operated at extremely low power. On the other hand, the speed is slow

enough to allow the architecture to be completely serial, which precludes low-power operation but

permits the system to be built with discrete IC parts. A system based on discrete parts and field-

programmable gate arrays (FPGAs) can be designed and built within the space of about two months

at a cost similar to that of a custom chip. I designed and constructed a digital ATP system based

on a trinary-trinary correlation method (an extension of the binary-binary case), described in detail

in Chapter 4, both as a way to have a working real-time versionof the algorithm, and as a way to

directly compare area, power consumption, and other critical properties between the digital and the

mixed-mode systems.

1.2.4 Overview: Learning and Continuous Speech Recognition

While Chapter 4 presents in detail the algorithms and architectures which perform robust

acoustic transient classification, they do not cover the subject of how the templates are generated,

which is part of the broad topic ofmachine learning. Chapter 5 takes a look at the average-value

method used to train the classifier in simulation. The baseline algorithm calls for simple learning of

template values by aligning and averaging examples from thetraining dataset. The method requires

a segmentation algorithm to detect transient events in the input and determine the point at which

the correlation output should be examined for a classification result. More intelligent methods
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of template generation can eliminate the need for a segmenter, allowing the correlation system to

operate continuously and increasing system robustness to situations such as overlapping transient

events. In Chapter 5, we investigate training methods basedon information-theoretic and neural-

network-like methods. Another step is to incorporate a learning algorithm into the system so that

template values can be trained by on-chip adaptation. In this thesis, however, I will only consider

the intermediate step of “chip in the loop” training, in which a computer evaluates the template

adaptation based on correlation results of the hardware system itself.

Currently, the most successful and most widely used method for automated speech recog-

nition is the Hidden Markov Model (HMM) [65]. Systems based on Hidden Markov Models must

incorporate many intricate strategies to reduce the searchspace in order to make computation times

reasonable. Digital systems incorporating large-scale parallelism can investigate many possibili-

ties in real time, but are bound to be power-consuming, especially as real-time speech recognition

systems constantly push the limits of available technology. The human brain, however, remains the

ideal against which all of today’s state-of-the-art systems are measured, and it succeeds at this amaz-

ing task using a tiny fraction of the power of the digital systems which it unfailingly outperforms.

The potential gains of realizing speech processing systemsin analog hardware make investigating

them worthwhile. Template correlation algorithms and architectures have the potential to provide a

fundamental layer of processing upon which a speech processing system may be built. The thesis

concludes with a look at two different approaches to achieving this goal. The first is an architec-

ture proposed by Unnikrishnan, Hopfield, and Tank [68, 69]. Like the acoustic transient processor,

the algorithm was developed with analog hardware implementation in mind. Also like the acoustic

transient processor, it is based on template correlation. It is presented as a neural network system,

but after a small amount of algebraic manipulation, one can arrive at a description which bears

strong resemblance to the template correlation equations.The main difference between the two is

that the Unnikrishnanet al.system is a continuous-speech digit recognizer, able to cope with some

of the problems of complex signals of long duration, but not requiring the solution of complicated

syntactic and semantic issues faced by more general speech recognition systems. In simulation,

the system achieves accuracies of 98 to 99% on the TIDIGITS database. Its requirements of the

hardware are formidable, however, which is one reason that the system has never been implemented

outside of computer simulation, where it runs very slowly and inefficiently due to the analog nature

of the design.

The second approach is a biological model of auditory processing in the human brain,

based on physiological data about the neural connections inthe auditory cortex [70]. There are areas
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of the auditory cortex which encode maps of the time-frequency domain. Certain neurons in this

region of the brain respond strongly to wavelet-like regions in time-frequency space, of differing

size, scale, and angular orientation. Thus they are more efficient than the wavelet processor at

capturing specific auditory events. It is likely that they encode the independent components of all

auditory events which are meaningful to humans. The wavelet-like regions of response include

areas of excitation and other areas of inhibition. The complex responses of the neurons are a result

of many synaptic connections and are not easy to describe in neural network terms. However,

they can be easily approximated by templates. A trinary encoding scheme such as that used by

the digital transient processor allows encoding regions ofexcitation as positive bits and regions of

inhibition as negative bits. Zero values mask out the regions of little or no response and fill in

the corners of the artificially rectangular template, leaving elliptical areas like those encountered in

auditory cortex neurons. Although the binary inputs and templates are only an approximation to the

information-rich spike trains delivering auditory information through the brain and the continuous-

valued response of the neurons, the template correlator should be able to provide additional insight

into the processing of auditory signals in the brain, and mayshed light on how these complicated

feature detectors in the brain can work together to enable the robust sound and speech recognition

of which the brain is so magnificently capable.
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