Chapter 1

Introduction

1.1 Introduction

In the late 1980'’s, as the computer revolution was getting fall swing, Carver Mead
wrote a book calledAnalog VLSI and Neural Systerfl§ espousing a view of analog circuit de-
sign which was different from the generally accepted norrhi¢ty might be described as “better
amplifiers and D/A converters”). The underlying premisehiattbiological systems outperform
electrical/electronic systems by many orders of magnitnderms of both compactness of design
and consumption of power resources. Loss of speed is comigeisy massive parallelism of archi-
tecture, and precision is hot compromised. Indeed, the oampatational power and often precision
[4] of many biomechanical and neurological systems is weajsded.

The reasoning behind the dichotomy in power dissipatioméen biological and elec-
tronic computers is relatively simple. At one extreme, dgital systems compete for resources
and the forces of natural selection drive them towards theees of processing power (smarter
is better) and energy efficiency (the least energy efficiematares tend to be the first to starve).
These requirements are strongly interdependent, as tlegg®f thinking requires considerably
more energy than, for instance, being a potted plant. Buéthee obvious competitive advantages
to being perceptive of one’s environment, perceptive ofooendition, mobile and, at the top of the
heap, rational. But regardless of the tradeoff made betwemessing power and energy efficiency,
natural selection always ensures that in biological systeme is continuously minimized with re-
spect to the other. Small size and compact design is a varchely related to power efficiency,
as larger organisms consume more resources, but largexsbegipport larger brain cases housing
more powerful brains.



A digital system has what is known as “restoring logic.” Tlyetem is powered by posi-
tive and negative (ground) supplies which also represenidisal logic values. Whenever a digital
operation occurs, a node capacitance is forced to the vélareoof the power rails by charging
or discharging completely. At a glance, there is seemiriglg Hifference between the discharging
capacitor of a digital operation and the rush of currentugtoa sodium channel in a spiking neu-
ron. The difference is one of method, scale, dimension, asemal. In the end, it is the material of
which electronic circuits are made that determines thenali2 constraints on scale and dimension.
As integrated electronic devices get smaller, power copsiom per operation does drop by leaps
and bounds. But the operation of digital circuits demands ¢lach circuit be able to maintain two
distinct states, and the particular nonlinearity of thasistor (exponential for bipolar devices and
also for MOS devices below the threshold voltage) requirgslage margin to keep the binary
states distinct. Attempts to lower the transistor deviceghold only shorten the voltage margin by
shifting the exponential curve downward, decreasing theadic power dissipated but increasing
the static power dissipated. For a circuit of a given sizen(oer of transistors) and frequency, there
is an optimum threshold and power supply voltage (therdlisraich room for improvement in to-
day’s digital fabrication processes), which minimizes poaonsumption, but the fundamental limit
is imposed by the physical properties of the silicon p-n fiomcitself, and the power savings cannot
be continued indefinitely. For silicon circuits to get povedficiency above this limit, a difference
in method is required. Analog processing is one way to go aibolf the system is continuous-
valued and not binary, then there is no need for restorinig kxgd the system can operate at rates of
power dissipation which are orders of magnitude below tludskgital systems. Of course there is
a tradeoff in moving to low-power in the analog domain, arat th the presence of noise (thermal
noise, shot noise, arnd f noise), nonlinear distortion, mismatch, drift, slewingyasitic inductive
and capacitive coupling, and temperature dependencee Tineganted effects have to be addressed
in every circuit design.

Today, however, as digital systems become increasingtyafas densely packed and de-
creasingly expensive (though expense reflects more th@sgoof scale than the cost of production
or operation), it is necessary to choose analog applicatidsely. There is no point in creating an
analog system which will be outperformed by an equivalegitali (microprocessor or DSP) system
in a year or two when digital fabrication processes moveaaixt smaller feature size and system
designs move to a lower power supply standard. The incrediblyances of CMOS fabrication
processes (as per Amdahl’s Law) [7] remain virtually un&leelcas yet by their fundamental limits.

These advances and the prospect of their continuation havieehdency to reduce the subject of
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analog design to the margins, and even that typically megasperational amplifier design, and A/D
(analog-to-digital) conversion. The modern engineergledth the real world through a transducer
and an A/D, after which the sky’s the limit on signal procegspossibilities. Except for simple
CMOS imagers and some newer applications based on capasstisors, transducers are the realm
of Microelectromechanical systems (MEMS) research and terrequire complicated or exotic
fabrication processes that are usually incompatible witlag CMOS or BiCMOS circuit layout.
Thus the sought-after application of “smart” analog-tgidil conversion, with sophisticated analog
processing occurring at the source on the analog signadteser, remains elusive.

On the other hand, the problem of power consumption and hesipdtion works against
the prospect of digital systems increasing in size and cexityglwithout bound. In addition, ultra-
low power circuits are becoming increasingly necessary@slmapplications increase in popular-
ity and use, especially in consumer electronics (mobilenphplaptop computers, GPS receivers),
but also in space electronics (micro-satellites, deepespobes) military electronics, and med-
ical electronics (pacemakers, hearing aids). Power aingtrdetermine the difference between
a battery life of hours and one of days, or one of monthsone of years, or can mean the dif-
ference between a device which can operate exclusivelyfafolar power and one which needs
alternate sources of power. Micropower electronics kegjiadiwatches running for years; this
kind of performance should and will be demanded of many mppéi@ations. Even for non-mobile
applications, power regulation and heat dissipation becarajor problems when electronics begin
consuming dozens of watts, forcing designers to find waysitdack on power use.

Analog VLSI designers often are able to overcome some of thwlihcks of the power-
hungry digital domain by emulating biological processesléattronic circuits which make optimal
use of the analog domain. Mimicking neurological processesdectronics is sometimes referred
to as “neuromorphic engineering” [2], a term which can beliadpto processes on the level of
individual neurons up to entire systems based on psychaghygata, and which is irrespective of
the medium of implementation, be it analog custom integratecuits, DSPs, microcontrollers, or
computer software. There is a seemingly endless debate wketiher the human brain is most
accurately described as a digital or analog signal pracgssistem (it contains elements of both),
and while it is possible that quasi-digital, spike-baseacpssing may be the ultimate solution to
approaching the efficiency and processing power of bio&dgieural systems, as of now only spe-
cially designed analog systems come close to this goal. ddganphic systems have the capability
to couple massively parallel computation with low powergamption and a large degree of robust-
ness in the presence of both noise and mismatch or failureroponents. Achieving this goal is a
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daunting but often greatly rewarding endeavor. This thegiBores one small corner of the space of
neuromorphic engineering design: | hope that in additiomdiacating the reader, it conveys a sense
of the scope of possibilities contained in the field, and #ess of excitement and exploration felt
by those whose research touches the neuromorphic engigeennmunity.

| have directed my research, which began while | was in thetdlaslegree program
at Stanford, towards investigating methods in auditorypaligrocessing which lend themselves to
implementation in analog hardware, specifically largdestabrication in silicon. A general goal
of all my projects, and of the research groups of which | hasenba part, has been to examine
systems which are not easily implemented in a digital envirent due to size, scalability, or power
constraints, and find systems in the analog or mixed-modeattowhich perform the same task at
low power and high robustness without compromising perforce. Typical methods include using
current-domain subthreshold circuits for ultra-low povegeration [1, 3], and using translinear
circuits to compute many arithmetic functions of currend &nltage in a minimal area [34]. These
methods, along with thoughtful system design, make effiaise of space on silicon. In order to
compare analog and digital systems fairly, it is criticaifyportant not to stop at merely simulating
these systems, but to fabricate and test them as well. Eabtinsylescribed in this thesis has been
put onto silicon and characterized by measurements madie iaboratory.

My contributions to the field of electrical engineering asdaciated fields include:

e An analog architecture for implementing the Continuous &l&tvTransform using the method
of complex demodulation, and the use of a cascade of lowplées fin conjunction with

complex demodulation to realize a Gaussian-shaped banfifias[17].

¢ A mixed-mode architecture which used oversampling methoggrform linear analog mul-

tiplications [20].

e A mixed-mode architecture for a Continuous Wavelet Tramsfprocessor, demonstrating
the use of the oversampling method for sine wave generatidrcamplex modulation and

achieving low power consumption [18, 21].

e A method for synthesis of log-domain filter circuits, espdlgias relates to audio-frequency

applications [48].

e Circuit architectures for current-mode audio-frequendterfbanks using log-domain filter

techniques [49].



e A mixed-mode architecture for implementing efficient teatplcorrelation, especially for use
in conjunction with the frontend filterbank for acousticrtséent classification [55, 56, 57].

e Analysis and optimization of acoustic transient clasdificaalgorithms using template cor-
relation methods, and investigation of training methodsstech classifiers [58].

e Fabricated VLSI circuits for each of the indicated arcHitees, including results and mea-
surements which are detailed in this thesis, as well as tesinare and software which is
beyond the scope of the thesis to describe, but which hasrhede publicly available and

has been of benefit to many others.

Due to the variety of material encountered in my researchyélorganized this disserta-

tion into four major topics:

1. Chapter 2. Mapping the time-frequency plane with efficeralog and mixed-signal compu-

tation: The Continuous Wavelet Transform Processor.

2. Chapter 3. Continuous-time, current-mode circuits fmustic-band filterbanks: Log-Do-

main Circuits, Filter Design and Synthesis.

3. Chapter 4. Algorithms, architectures, and mixed-sigiraliits for pattern recognition using

template correlation: The Acoustic Transient Classifier.

4. Chapter 5. Methods for training the acoustic transieassifier, extensions and directions of
the research.



1.2 Mapping the Time-Frequency Plane

The time-frequency plane is a powerful concept in signatessing [8, 13, 15]. All
acoustic signals can be represented as functions of boghetm frequency; speech recognition and
acoustic pattern classification systems require that sicdnformation be mapped into a function
of both time and frequency. In Chapter 2, | summarize thelprotf mapping the time-frequency
plane, and show how different mappings can yield differefdrimation about acoustic signals.

A signal can be divided into discrete units (samples) whiadgaately describe the signal;
i.e., the original signal can be reconstructed from its compbueits. This is true only if all samples
cover the total area of interest (total bandwidth and tiraaspf the signal) in the time-frequency

plane, whereoverageas determined by the area of uncertainty of each sample,

AfAL > =, (1.1)
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the acoustic corollary of Heisenberg’s uncertainty pplein which matter waves are replaced by
acoustic pressure waves. Every sampled output of an acaigtial-processing system can be
viewed as covering a small area in the time-frequency plaFiee representation of the area of
support of a system as a rectangle with widthand heightA f is an idealization of real systems
which may be primarily localized in a small area of time-tneqcy space but spread well beyond
the boundaries. The Gaussian is in fact the only functiosfgatg the minimumA f At area [8],
yet it is nonzero to infinity: a true Gaussian is in fact norsaubut causal approximations to the
Gaussian profile have near-minimum area.

The two most common divisions of the time-frequency plametheDirac mapand the
Fourier map[15], shown in Figures 1.1(a) and (b). The Dirac map corradpdo a sampled signal,
and the area covered by each sample is the frequency spmesglttie sample period. The Fourier
map comes from the Fourier transform, which divides theuesegy plane into even parts. The
non-windowed Fourier transform assumes an infinite time$peathe signal, and therefore does not
have minimum area samples in the time-frequency plane.

Each of these methods yields different information: TheaBimap yields thbesttime
resolution but the worst frequency resolution; the Fouriap achieves the best frequency resolution
at the expense of having the worst time resolution. Overvigantinuous wavelet decomposition

This view of the time-frequency plane naturally leads toaglef ways to create time-
frequency maps which achieve the optimal tradeoff betwipe@ &nd frequency resolution. One of
these is thavavelet mag{Figure 1.1(c)) [15]. An important property of the waveleajnis that the
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Figure 1.1: Some mappings of the TF plane.

filter center frequencieg. are spaced exponentially, with the bandwidth of each filtepprtional

to its center frequency. If we use a simple filterbank of basgfilters to generate the wavelet map,
then to adequately capture the output in a sampled-datansyse must sample each filter channel
at twice {.e., the Nyquist rate of) the upper cutoff frequency of its tfengunction. However, in
this architecture the upper cutoff is typically twice thdéueaof the bandwidth, which results in an
output bandwidth which is larger than the input bandwidthe Tvavelet decomposition, however,
describes &ransform so no information has been added to the system and it shotliemecessary
to increase the bandwidth of the system. Preferably, thesyshould shift the frequency content
of each channel toward zero, allowing it to be sampled at thguiét rate corresponding to the
channel bandwidth rather than the channel upper cutoffiragy. Thus the total output bandwidth
is equal to the input bandwidth.

We adopted the method of shifting the center frequeficpf the band to zero using
complex demodulatiof®]. The result of this process is two orthogonal outputhesHavhich can be
sampled at twice the lowpass filter cutoff frequency. Re-atatibn of the two outputs by the same
process is equivalent to bandpass-filtering the origirghai We can approximately reconstruct
the original input by applying this manipulation to eactefitiank channel output and adding them
together.

The Gaussian function has the most compact representatibie time-frequency plane,
and so it forms the core filtering process of the Continuousélda Transform processor. An

approximation to a half-Gaussian-shaped lowpass funddioite easy to create using a series of



simple lowpass filters in cascade: the total transfer fonatonverges to a Gaussian function as the
cascade length is increased.

We have designed and fabricated a series of analog and rsiged} chips to perform the
wavelet transform. Two major obstacles to overcome wererohéhing 1) how to generate a sine
wave with low harmonic distortion and 2) how to implement ghtty linear multiplier. We devel-
oped a robust system by using a hybrid analog and digitaltaotare [18, 20, 21]. We solved both
problems of the original design by using emersampled binary representatiafithe modulating

sine wave [20].

1.2.1 Current-mode filterbanks

It is not always necessary to preserve phase informatiorrderado perform acoustic
recognition and classification tasks. In such cases a sififtpidvank of bandpass filters may suffice,
with the outputs rectified and smoothed to yield an estimésgmal energy in a particular band
at a specific instant in time. In Chapter 3, | consider the lgrobof designing such a filterbank
using current-modecircuits as a frontend processor for the acoustic recagniystem described
in Chapter 4. The filter transfer functions in a current-mditterbank are the ratio of output to
input currentrather than voltage. | chose a current-mode architectutly fecause it is convenient
to interface to the backend systems, which are also cumexe circuits, but more importantly
because current-mode filters have a larger dynamic rangth¢oorder ofl0°) than voltage-mode
circuits which have similar power-consumption and layoeta Subthreshold analog voltage-mode
filterbanks have been well-researched and well-develofie®,[51], but remain subject to low
dynamic range.

Current-mode filterbanks, on the other hand, are only baginio be extensively investi-
gated. Recent work on the relatively new subjeclogfdomain filterd39, 47] has provided some
circuit designs and methods for current-mode filters. Wagkivith circuit ideas from Philippe
Pouliquen and Wolfgang Himmelbauer, | developed a new ntetfi@enerating log-domain filter
circuits given a transfer function, and fabricated some-pmwer BICMOS designs on a test chip
which proved to implement the filter functions correctly.gliiie 3.11 shows one bandpass filter
design.

A useful aspect of log-domain designs is that filter paramsetach as center frequency
fo and resonancé are controlled directly by bias currents, permitting theeaircuit to be used
for each filter of the bank, with bias currents appropriategled for each one.



1.2.2 Acoustic Transient Recognition

Simple patterns often can be successfully recognizedsftiled) by directly correlating
each input pattern with a stored template: compute therdgisthetween each input and template
entry using an appropriate metric, sum the result over attpmments of the feature space, and
compare the totals among all templates to select a winnés.niéthod is a linear classifier encoding
one separating hyperplane per template. For acousticl gigi@essing, the feature space is typically
a time-frequency map.

Speech signals are normally too complicated to enable assitd recognition system
using correlation, due to the necessity of coping with larggance in pitch, timbre, and time
for the same target outpuBcoustic transientson the other hand, are signals which by definition
occur over very short periods of time (less than approxitpdtl.0 second). Examples of acoustic
transients are the sound of a handclap, a door closing, smeis, and certain events in speech
which occur on sub-phonetic time scales, such as the suddstsland silences associated with
hard consonants like ‘p’ and ‘t'. Time-frequency decompiosigives a relatively stable description
of an acoustic transient from instance to instance.

Together with Dr. Fernando Pineda, at the Johns Hopkins dusity Applied Physics
Laboratory (JHU-APL), we have experimented with acoustimsient recognition by correlating
time-frequency-mapped outputs with templates formed leyagying together examples of the tran-
sients from a training set [54, 55]. In addition, we have expented with ways of reducing the
complexity of the computation and the amount of data stonedaich template. The result is a
system which lends itself very nicely to efficient implenaidn in analog hardware [57].

We begin with a baseline algorithm which is the direct catieh between an input and a
template

M N
c[t] = Z Zx[t—n,m]pz[n,m] (1.2)

m=1n=1

where M is the number of frequency channels of the inp\Mtjs the maximum number of time
bins in the window (enough to cover the transient event at2lms per bin);z is the array of input
signals split into frequency bands, is the matrix of template pattern values for patterrand¢

is the current time. This formula produces a running cotiatec,[¢ ] of the input array with the
templatez. A system implementing the correlation in this form regsies analog (or multibit, if
digital) storage foiM x N values foreachtemplate, and/Z x N multiplications at every time step,
also for each template. The computational requirement®aredable: for example, a 10-template
classifier with a 16-channel filterbank frontend, operating ms per time step and allowing approx-
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imately 1/10 second (64 bins at 2 ms) per template requires ¥ million multiplies per second.
This is feasible using dedicated software. However, we \tewtemplate correlation as a funda-
mental low-level task of potentially many kinds of acousgcognition and classification systems,
and as such it should be made as simple, compact, and pdiegergfas possible.

We simplified the correlation equation from the standpoihammalog hardware imple-
mentation through a series of steps, arriving at an alguritlith requirements for memory storage
reduced to a single bit per template value (thlis,x N bits per template) plugv analog val-
ues stored in a shift-and-accumulate register. The acgufthe algorithm in classification tasks

remains little affected by the sparse encoding of inforarain the template.

1.2.3 Analog VLSI implementation of the transient classifier

Figure 4.7 shows a block diagram of the correlator architecive developed. The details
of the circuits which implement the frontend section, ndires, and correlator are explored in
Chapter 4. Simple memory circuits such as those found in RAMscprovide the binary template
storage. Currents from each channel input are switched nt@mmon lines depending on the
template value for channet and timen. Merging currents together performs the summation across
the M channels. Twducket brigade devicg8BDSs), circuits usually used for analog delay lines
in high-fidelity audio and other acoustic applications [62], perform summation across time
Summed currents are converted to a voltage on each bucketdbrinode by integrating onto the
bucket brigade capacitor for a fixed period of time, and wematn the difference between the last
bucket brigade cell of the two BBDs with a simple switchedamdtor circuit. The bucket brigades
are fully pipelined so that for each time¢he system produces one complete correlation computation
at its output node.

We have made a simple estimate of power consumption base@tailed knowledge
about the circuit components used in the VLSI layout. Thiggroconsumption typically should be
less than 10 microwatts for each template. We expect a systéha large “vocabulary” of 200
transient events using the normal timestep of 2 ms to consesad¢hat 2 mW of power. This system
computes all correlations on all templates in parallel, dredtefore does not need to employ any
measures to reduce the search space of the solution; amdlitqas a complete correlation at every
timestep, so segmentation of the input is not necessarygthd may be desired for robustness,
particularly in instances where the transients are preddotthe system in isolation.

I made an analysis of the performance of the algorithm in Eitimn under different archi-
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tectures. The architecture described above representsalof a number of different possibilities.
First, any combination of input or template can be made gioatrinary. Second, although a zero-
mean transformation is the best way to get a simple decissandary for choosing a binary value,
the choice of pairwise frequency channel differences iy anle of many such transformations.
Other possibilities include time differences between das)genter-surround computation for each
frequency channel, or some combination of time and frequelifterences. The architecture of
Figure 4.16 was chosen as the simplest representationaimimy acceptable performance on the
classification task. However, results of the analysis dédéht architectures showed that the use of
a channel difference computation in addition to a binaryesgntation obothinput and template
resulted in similar classification rates to the proposecdenhinode architecture. A system with both
binary inputs and templates can be implemented entirelgardigital domain (except for the fron-
tend processing of the input prior to binarization). Theiropt form of a binary-binary correlator
would be a custom digital architecture, using a parallehiéecture similar to that proposed for the
analog-binary correlation. The slow speed at which theesystperates (1 ms per sample) allows
the digital system to be operated at extremely low power. l@nather hand, the speed is slow
enough to allow the architecture to be completely serialciwvprecludes low-power operation but
permits the system to be built with discrete IC parts. A sysbaised on discrete parts and field-
programmable gate arrays (FPGASs) can be designed and lithilh whe space of about two months
at a cost similar to that of a custom chip. | designed and coctetd a digital ATP system based
on a trinary-trinary correlation method (an extension @fltimary-binary case), described in detail
in Chapter 4, both as a way to have a working real-time versidhe algorithm, and as a way to
directly compare area, power consumption, and other afitimperties between the digital and the

mixed-mode systems.

1.2.4 Overview: Learning and Continuous Speech Recognition

While Chapter 4 presents in detail the algorithms and aechites which perform robust
acoustic transient classification, they do not cover thgestilof how the templates are generated,
which is part of the broad topic ahachine learning Chapter 5 takes a look at the average-value
method used to train the classifier in simulation. The baseligorithm calls for simple learning of
template values by aligning and averaging examples fronraiieing dataset. The method requires
a segmentation algorithm to detect transient events inrpetiand determine the point at which
the correlation output should be examined for a classifioatesult. More intelligent methods
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of template generation can eliminate the need for a segmexi@ving the correlation system to

operate continuously and increasing system robustnesti&tions such as overlapping transient
events. In Chapter 5, we investigate training methods basgdformation-theoretic and neural-

network-like methods. Another step is to incorporate aneay algorithm into the system so that
template values can be trained by on-chip adaptation. #thigsis, however, | will only consider

the intermediate step of “chip in the loop” training, in whia computer evaluates the template
adaptation based on correlation results of the hardwateryisself.

Currently, the most successful and most widely used methrogftomated speech recog-
nition is the Hidden Markov Model (HMM) [65]. Systems basedsidden Markov Models must
incorporate many intricate strategies to reduce the sesp@te in order to make computation times
reasonable. Digital systems incorporating large-scatallplism can investigate many possibili-
ties in real time, but are bound to be power-consuming, ésibeas real-time speech recognition
systems constantly push the limits of available technolddne human brain, however, remains the
ideal against which all of today’s state-of-the-art systeme measured, and it succeeds at this amaz-
ing task using a tiny fraction of the power of the digital gmas which it unfailingly outperforms.
The potential gains of realizing speech processing systemsalog hardware make investigating
them worthwhile. Template correlation algorithms and #decliures have the potential to provide a
fundamental layer of processing upon which a speech priogesgstem may be built. The thesis
concludes with a look at two different approaches to achgpthis goal. The first is an architec-
ture proposed by Unnikrishnan, Hopfield, and Tank [68, 6%elthe acoustic transient processor,
the algorithm was developed with analog hardware impleatiemt in mind. Also like the acoustic
transient processor, it is based on template correlatiois. presented as a neural network system,
but after a small amount of algebraic manipulation, one gaimeaat a description which bears
strong resemblance to the template correlation equatidhe.main difference between the two is
that the Unnikrishnamt al. system is a continuous-speech digit recognizer, able te wdh some
of the problems of complex signals of long duration, but mojuiring the solution of complicated
syntactic and semantic issues faced by more general speeahnition systems. In simulation,
the system achieves accuracies of 98 to 99% on the TIDIGIT&bdae. Its requirements of the
hardware are formidable, however, which is one reasonfeatytstem has never been implemented
outside of computer simulation, where it runs very slowly arefficiently due to the analog nature
of the design.

The second approach is a biological model of auditory psingsin the human brain,
based on physiological data about the neural connectidhg iauditory cortex [70]. There are areas
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of the auditory cortex which encode maps of the time-frequatomain. Certain neurons in this
region of the brain respond strongly to wavelet-like regidamtime-frequency space, of differing
size, scale, and angular orientation. Thus they are moreiegifithan the wavelet processor at
capturing specific auditory events. It is likely that thexede the independent components of all
auditory events which are meaningful to humans. The walikketregions of response include
areas of excitation and other areas of inhibition. The cemptsponses of the neurons are a result
of many synaptic connections and are not easy to describeurahnetwork terms. However,
they can be easily approximated by templates. A trinary @ingoscheme such as that used by
the digital transient processor allows encoding regionsxaftation as positive bits and regions of
inhibition as negative bits. Zero values mask out the regiohlittle or no response and fill in
the corners of the artificially rectangular template, lagwelliptical areas like those encountered in
auditory cortex neurons. Although the binary inputs anddiees are only an approximation to the
information-rich spike trains delivering auditory infoation through the brain and the continuous-
valued response of the neurons, the template correlatotdshe able to provide additional insight
into the processing of auditory signals in the brain, and staad light on how these complicated
feature detectors in the brain can work together to enaleleabust sound and speech recognition
of which the brain is so magnificently capable.
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