Chapter 2

Continuous Wavelet Transform

2.1 Introduction to the 1-Dimensional Continuous Wavelet Transform

Wavelet transforms are time-frequency transforms whiclp tha time-frequency plane
in the manner of Figure 1.1 (c) using specific dilations anddtations. Tilings of higher-frequency
areas of the plane have larger bandwidth and thus, in acooedaith the uncertainty principle,
shorter timespan. The bandwidth is proportional to thetfwosof the tile along the frequency axis.
The relationship between frequency position and bandw@hid inversely, timespan) is in keeping
with the Nyquist sampling theory which states that in ordeadcurately capture the information
about a signal (so as to be able, for instance, to recongtracsignal), the signal must be sampled
at a twice the value of the highest frequency in the signalother words, the timespan covered
by the samples must be inversely proportional to the barttivatithe signal. This makes wavelet
tiling more “natural” in a sense, and while it cannot guaganthe most efficient representation of
any arbitrary signal, it will tend to be a good representafr most natural signals.

Itis important to explain what | mean by a “good represeatsti A voice-band recording
sampled at 8 kHz can be called a “good representation” inghsesthat it contains all the informa-
tion about the signal necessary to reconstrady,(play back) the recording. On the other hand, a
sampled signal (without any further transformations) ielsaused for speech recognition because
the speech signal is encoded into the time-domain signanmptex ways that cannot be detected
by a purely time-domain analysis (the Dirac basis). Eqenty, a Fourier transform (Fourier ba-
sis) of the signal is of limited use. A windowed Fourier tfamsn does fairly well at capturing
the essence of the speech recording, but if the window is efifiength, then there will always be
some events which are too short in time to be accurately septed. Two solutions to that problem
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may come to mind: Either vary the size of the window accordmthe demands of the moment,
or perform the analysis in parallel with windows of severiffiedent lengths. The first solution is
adaptive, and while it is a very interesting solution, it iicult to compute and requires informa-
tion about the adaptation to be kept with the decomposedikifythe signal is to be analyzed or
reconstructed. Advanced adaptive techniques are beyensctipe of this thesis. The other solu-
tion, parallel analysis at different scales, works welk, te result is redundantly computed, which
increases the bandwidth of the decomposed sigrald for »n parallel analyses. If we remove
the redundant parts of the decomposition, the part thaftissla wavelet decomposition. Parts of
the decomposition capture features of the signal whichromeer short time tfansient$ and other
parts capture features of the signal which have fine frequstmacture formantg. Natural signals,
particularly acoustic ones which are the primary topic @ thesis, require the accurate detection
of both transient-like and formant-like features for au&io classification and interpretation of the
signal.

Each tile of the time-frequency plane represents a singbvélet coefficient” computed
by applying a filtering function centered on that area andrftpthe correct aspect ratio between
time span and bandwidth. The so-called “mother functiorscdibes a family of functions at dif-
ferent scalesd) and temporal offsets)] which determine the position and aspect ratio of each tile

covering the time-frequency plane:

buslt) = = (7). ey

It is desirable for the wavelet function to hageempact supportthat is, the function should be
bounded or generally localized in time and frequency. Imfarterms, the wavelet should be able
to meet the criteria [14]

()] < @+~ (2.2)
(W) < c(l+]w) (2.3)

for somee > 0. Existence of an inverse transform depends on the rel&ijons

o 2
/ @5 < oo (2.4)

—oo W]

Equation (2.4) implies tha? (w = 0) = 0, which in turn implies an oscillatory function in time.
The Discrete Wavelet Transform (DWT) is a discrete-timecfiom which derives from
certain families of orthonormal basis functions whichsfgtithe conditions of (2.3) and (2.4). The
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wavelet mother function is bound is space by satisfying thenger relationship)(¢) = 0 outside

of a small region of compact support. Bounding the frequaseymatter of filtering. Because the
system is discrete-time, the filtering functions are FIRefitand the bandpass characteristic results
from sequential application of a lowpass and a highpass fil@, a common practice in signal
processing. An elegant “pyramid” algorithm [11] definesefilbg over different frequency scales
in a recursive manner in a way that allows information fromghleir frequencies to be pushed into
lower frequencies as the recursion progresses.

Using well-developed discrete-time filter theory, the Fighpass and lowpass filters can
be transformed into an efficient pipelined butterfly filtds¢aknown as a lattice filter) [12]. The FIR
filter coefficients or the equivalent lattice filter coeffitie are uniquely determined by the mother
wavelet basis function. The length of the FIR or butterflyefilis the wavelet order. Higher-order
wavelet functions typically yield better distribution offormation among the wavelet dilations,

leading to better data compression when the wavelet systeised for that purpose.

2.2 CWTvs DWT

The Continuous Wavelet Transform (CWT) is an analog fil@gfunction and is similar
to what is known as the Gabor spectrogram [13]. Similarlyh Discrete Wavelet Transform, it
requires operations of lowpass and highpass filtering Bardifit scales. However, the filtering func-
tions are performed on the input in parallel, as a filterbaritty the lowpass and highpass functions
combined into a single bandpass function. The differeriescare interpreted as adjacent bands in
the frequency domain, with the bandwidth increasing privpaally with the center frequency of the
band: thus the CWT is described by a cons@ritkerbank. That description is shown graphically
in Fig. 2.1.

The DWT produces the equivalent result by starting with aklof discrete data and
performing successive high- and lowpass digital filteriige filtering is repeated on the lowpass
output in order to bandpass the signal in a series of stagdjesl Cdilations.” Each dilation divides
the frequency space of the current interval in half whileldimg the time span, thus keeping the
time-frequency product constant. In contrast, the CWTd#igia signal into a set of logarithmically-
scaled frequency bands by passing it through a bank of aargtdandpass filters. Both the CWT
and the DWT are filterbanks, although the CWT takes the mdtitire form of a physical filter
with a transfer function in the frequency and time domaingVTfilters are carefully formulated
mathematical constructs whose transfer functions ares&euand which can only be said to per-

16



Wavelet system output channels

Frequency

Figure 2.1: Output sampling. Points marked fepresent center of the time-frequency area covered
by that sampled output.
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Figure 2.2: Frequency-time representation of the inputvasl@pping Gaussian filters.
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form “lowpass” and “highpass” functions in a vaguely-defirgense. Due to the constraints of
the Discrete Wavelet Transform specification, all DWT fidtbave compact support. The fact that
the DWT can be confined absolutely in time and frequency isfpifwat it cannot be implemented
by physical filters in a continuous time domain. By being pteity realizable, the CWT cannot
achieve perfect compact support. Instead, analogoudhetavay elliptical filters such as the Cheby-
shev and Butterworth are generated, CWT functions are ieartet! in order to achieve maximal
compactness with respect to some criterion.

A major difference between the DWT and the CWT is that the C\05e$ the concept
of compact supportThe continuous-time nature of the transform implies the afscausal filters,
whose frequency response cannot be perfectly limited torengbandwidth. Instead, the filters
must overlap. The shape and complexity of the filter deteemie amount of overlap and thus
higher-order filter functions can be used to describe highger continuous wavelet transforms,

analogously to the way that higher-order functions opératie discrete wavelet transform.

2.3 Gabor Logons and Wavelets

The beginnings of the theory of the continuous wavelet foans begin with a seminal
work by Gabor [8], a paper with the rather bold title “Theofy@mmunication” (1946) which
outlines the physical basis behind limitations of time-éimand Fourier analysis and shows how
both time and frequency can be incorporated into a functromiging the optimal tradeoff in reso-
lution between the two domains, and how the time-frequetagepcan be effectively represented
by tiling with these functions. Gabor calls the functionsgbns,” those functions which have min-
imum AwAt. The simplest logon form (lowest order CWT filter) is the Gaas function,

T (w) = e9"/20" (2.5)

The laws of Fourier transforms dictate that a Gaussian ititthe domain is also a Gaussian in the
frequency domain, thus this function is smooth in all di@ts on the time-frequency plane. The
properties of Fourier transforms also dictate a symmettywden time and frequency shifts of a
signal and multiplication by a complex sinusoid in frequeaad time, respectively:

Bw) = eiete g—loma/om] @9)
b(t) = e—Iwat ,—(t=ty)?/20} (2.7)
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The complex exponential in either transform can be spli irgal and imaginary parts, in which
case the function appears as a sinusoid modulated by a @Gawssielope, as shown in Figure 2.3.
A family of curves can be generated on this basis, using thes§&an as an envelope around a
sinusoidal signal of differing frequencies. The meaningheke curves should be intuitively clear:
The more cycles of a sinusoid fit into the Gaussian envelbygehetter the frequency is defined, but
the poorer the time is defined. A pure sinusoid of infinite darerepresents one extreme, for which
frequency is known exactly but time is not known at all. Liksey the Gaussian itself represents
the other extreme: the cosine function for which time is kn@axactly but for which frequency is
entirely unknown, having no reference signal to which it barcompared. The “wavelet tiling” of
the time-frequency plane (Figure 1.1 (c)) dictates therativ,, the modulating frequency, ,,
the width of the Gaussian envelope. As one gets bigger, the gets smaller.

T T T T T T T

ir " ——  Sine (odd) 1
I - == Cosine (even)

Figure 2.3: Gabor sine and cosine logons, or wavelets.

The Fourier transform property of time and frequency shiiédds an interesting insight
about the connection to dilations and shifts of the discneteelet transform, since they are man-
ifestations of the Fourier and inverse Fourier transforraslike the discrete wavelet transform

families, the Fourier transform pair of the Gabor logon fgnis beautifully symmetric.
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Other useful continuous wavelet filter functions can bewdetistarting from different
criteria for compactness. One such case is the chirplet yiliEh allows rotation of the filter with
respect to the time and frequency axes.

The frequency shift of the Gabor logon, which is a multipiica by a complex sinusoid
in the time domain, amounts to a signal demodulation, whemder to maintain the symmetry
between the time and frequency sides of the transform, thmplex nature of the frequency shift
must be maintained; that is, the modulation must be perfdrmi¢h both a sine and a cosine to
represent the real and imaginary parts of the multiplicatidith the complex exponential.

2.4 Complex Demodulation

Continuous-time bandpass filter functions with arbityahilgh ¢ values are notoriously
difficult to design with precision (a fact which will be disssed in detail in Chapter 3, Section 3.5).
It is not especially difficult to build a second-order filtarxcion which can be tuned externally to
the desired specifications, but managing to get an entieetfdhk of 16 or 32 independent sections
to all match within a given tolerance can be difficult or imgibte, depending on the strictness
of the specifications. Adding a requirement of low power comgtion compounds the problem.
Generally, the only practical circuit solution is to leakie tontinuous-time domain and instead enter
the discrete-time domain, with the use of switched capa¢®eC) circuits. The result is accurate
(for analog) computation with modest power consumptiorhatexpense of die area, which tends
to be high due to the use of large numbers of capacitors.

We did, in fact, resort to switched capacitor architectuimsall of our wavelet filter
functions. However, it was not necessary to stop optimizintpe architectural (circuit) level. On
the algorithmic level, we were further able to make betterdpass filters using a method called
complex demodulatioff]. Demodulation is a well-established method used widelynodems
and radios, based on the principle that the frequency cbofemsignal can be shifted up or down
by multiplying it by a pure sinusoidal “carrier” signal anden filtering appropriately. In those
applications, the signal to be broadcast is first modulated ocarrier signal to push it into a high-
frequency broadcast band, and then demodulated by theeeteiretrieve the original signal. The
purpose of modulating is twofold: First, the high-frequgmsignal can be broadcast much further
without significant attenuation, and second, a large nurobsignals can be transmitted at the same

time by assigning each one a non-overlapping portion of ligtremagnetic spectrum.
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Demodulation of a signal by a carrier

An input time-varying signak(¢) is multiplied by a sinusoidal reference sigrét) =
cos(wpt). As viewed in the frequency domain, the result splits thesirground the
reference to generate the sum (referescmput) and difference (reference input)
components. This result can be easily seen by considermguadonsisting of a single
sinusoidal function of arbitrary phase relationship toréference, for instance(t) =
cos(wt + ¢). The modulation is then

z(t)s(t) = cos(wt + ¢p)cos(wot). (2.8)

Now, adding the trigonometric identities

cos(u +v) = cos(u)cos(v) — sin(u)sin(v) (2.9)
cos(u —v) = cos(u)cos(v) + sin(u)sin(v) (2.10)

together gives
cos(u + v) + cos(u — v) = 2cos(u)cos(v) (2.11)

such that, when used with Equation (2.8), we get

z(t)s(t) = % (cos((wo + w)t + ¢) + cos((wp — w)t — ¢)) (2.12)

which contains one sinusoid describing the suym-w of the carrier and signal frequen-
cies, and one describing the differengg— w. Extending the result to arbitrary inputs
involves viewing the arbitrary input as a Fourier seriesiné components; since the
modulation multiplication is a linear function, supergimsi applies, and every Fourier
component of the arbitrary input is split into sum and défeze components across the
carrier frequency. Filtering the resultant signal with ghpiass filter which accepts the
sum component but rejects the difference component is theeps known asodula-
tion. Filtering the same signal instead with a lowpass filter Whiccepts the difference
component but rejects the sum component is the process kassamodulation

A useful application of the principle of signal modulatiowolves performing the demod-
ulation first. In such case, the signal to be encoded is multiplied by draird carrier frequency
in order to shift the desired frequency band down to zero. rékalting signal is lowpass filtered
to remove the component representing the sum of carrier atlilaor. If desired, the signal can
then be modulated back into its original band, at which pthiatresult is a bandpassed signal. Not
only is it bandlimited, but the band to which it is limited che made arbitrarily small, since there
is no limit (other than the practical limits of noise, jittef the carrier frequencyetc) to the cutoff
frequency of the lowpass function. The tight band limit slates to an arbitrarily large effective
value of Q. The position of the band is placed at the carrier frequesayit can be made very
accurate (particularly since in our architecture the eafrequency is driven by a quartz oscillator).
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The method just described is also a well-established methsed in subband coders
and to make “lock-in" amplifiers able to analyze minisculedgnency bands for signal and noise
analysis.

There is one small mathematical catch to this method. Whégnalss demodulated to
zero frequency, parts of the signal extend into the negdtaguency domain, which in terms of
the actual measured signal means that these frequenciésdee back (aliased) into the positive
frequency domain. There they would be inseparable excephéo“complex” part of complex
demodulation. The method requires two carrier signals,anehich is offset from the other by
90 degrees phase. Thus if one carrier describes,ginthen the other describes cog). Two
demodulations are performed in parallel, each with one eftino carriers. The two resulting
signals both have frequencies aliased into apparent mugthetween the two signals is all the
information necessary to separate out the aliased paetssafbsequent modulation. In fact, it can
be shown that this requires nothing more than separatelyulaiig the two results, again with
the modulation carrier signals offset in phase, and addiegwo modulation results together. No

filtering is necessary for the modulation step, which is haotonsequence of the math.
Complex Demodulation and Reconstruction of a signal by a caier

Returning to our previous example: An input time-varyingnsil z(¢) is multiplied by
two sinusoidal reference signals(t) = cos(wpt) andsz(t) = sin(wyt). Choosing for
z(t) the simple form of a sinusoid of arbitrary phage

z(t)s1(t) = cos(wt+ ¢p)cos(wot) (2.13)
z(t)s2(t) = cos(wt + ¢)sin(wyt) (2.14)

Applying the following trigonometric identities—
cos(u + v) + cos(u — v) = 2cos(u)cos(v) (2.15)
sin(u + v) + sin(u — v) = 2sin(u)cos(v) (2.16)

yields the following expressions:

xz(t)s1(t) = % (cos((wp + w)t + @) + cos((wy — w)t — ¢P)) (2.17)
s(t)sa(t) = % (sin((wo + )t + ) + sin((wo — W) — 4)) . (2.18)

Now perform a lowpass filter by assuming an ideal filteringction, 4(¢), having a
Fourier transformH (w), which perfectly rejects the sum of frequencies while petlye
passing the difference of frequencies (see Figure 2.4):

h(t) x z(t)s1(t) = %cos((wo —w)t — Q) (2.19)
h(t) % 2(t)sa(t) = %sin((wo — W)t — ). (2.20)
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Figure 2.4: Demodulation of an inp¥ in the frequency domain with a perfect sine waveand

ideal modulation filted .

Reconstruction involves first multiplying each functiontbhg same sine and cosine
carriers:

h(t) x (x(t)s1(t))s1(t) = cos(wot)%cos((wo —w)t — ) (2.21)
h(t) x (x(t)s2(t))s2(t) = sin(wot)%sin((wo —w)t — ). (2.22)

Finally, without filtering, these two parts are added togeto produce the reconstruc-
tion (in this case, exact reconstruction, due to the use dégifilters):

2'(t) = h(t)* (x(t)s1(t))s1(t) + h(t) * (x(t)s2(t))s2(t) (2.23)
= cos(wot)%cos((wo —w)t —¢)
—i—sin(wot)%sin((wo _ W)t — ). (2.24)
The trigonometric identity (2.10) applies directly, gigithe final result:
1

Z'(t) = §cos((w0 —wy +w)t+ @) (2.25)
= %cos(wot + ) (2.26)
_ %x(t) 2.27)

showing that the reconstruction is exact except for theiredquapplication of a gain
of two. Again, this example can be extended to arbitrary sty the application of
Fourier series and superposition.

2.5 Complex Demodulation in the Continuous Wavelet Processor

The architecture used for complex demodulation in the vey@iocessor is depicted in

Figures 2.5 and 2.6 and described below.
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The input function is designated by, (¢). In order to demodulate it with respect to some
given frequencyw. (one of the center frequencies of thechannels of the wavelet decomposition),

we use the following multiplication:
fout (t) = 2h(t) * (fin (t) (cos wct + j sinw,t)) (2.28)

where the lowpass filter time-domain transfer functign) is shown without reference to a specific
equation and is assumed for the sake of argument to be a fiiiehywasses all frequencies below its
cutoff unattenuated, and blocks all frequencies aboveuitsffc Since the lowpass filter is assumed
to be real, and the inpyt, (¢) is real, then the output, (¢) of Equation (2.28) must necessarily be

complex-valued, and can be represented by separating itéat and imaginary parts:

fout (t) = freal(t) + jfimag(t)- (229)
Therefore,
freal(t) = 2h(t) * (fin () cos wet) (2.30)
and
fimag () = 2h(t) * (fin (t) sinw,t) . (2.31)

Note that Equations (2.30) and (2.31) are themselves batfvadued. Both results are obtained
easily by multiplying the input by two sinusoids which & out of phase with each other.

Each part (sine and cosine) of the demodulation processupesda new signal which
contains the sum and the difference of the original and ledrfrequencies. Since we are demod-
ulating the carrier frequency down to zero, we are intetestay in the difference, so we use the
lowpass filterh(t) to get rid of the part containing the sum of the two signal fiexgies. From
the remaining difference, one cannot separate signals ersiole ofw. from those on the other
sincew, is now at zero and negative frequencies have no physicalingean the real-valued sig-
nal, negative frequencies are flipped over the frequency axd alias into the positive frequency
spectrum. However, the information necessary to sepdratpdsitive from the negative frequency
components is preserved in the phase relationship betfgg(¥) and fin.g(t), as shown by the
exact reconstruction below.

In order to remodulate the signal back to its original fretgeye we perform the following

multiplication:
fin(t) = four(t)(cos wet — j sinw,t). (2.32)
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This is the same function as the demodulation (2.28) excgphé& change in sign and the lack of a
lowpass filter function. We multiply out the real and imaginparts of this equation to get a purely

real result:
fin(t) = freal(t) cos wet + fimag(t) sinwt. (2.33)

This step separates the negative from the positive frequeamponents as it pushes the center
frequency up from zero to its original value. The result is &xact reconstruction of the original
input (within the limits of a physical lowpass filter to apgimate the ideal one used here).

The signs have worked out such that the remodulating sidsdmve exactly the same
phase relation as the demodulating sinusoids. This fagiesitg that an efficient architecture should
make use of the same hardware to perform both the demodulatio the remodulation. In other
words, a single chip can be configured either as the functimomposer or as the function recon-
structor. In the instance of the continuous wavelet transfthe lowpass filter for the demodulation
can be combined with the Gaussian filter of the transformagiach that no additional filter is re-

quired.

2.6 Post-processing

Subsequent to complex demodulation and Gaussian filteh@gystem outputs are in
a form useful for signal processing: for instance, analoghous of compression wherein signal
bands with energy less than a critical threshold can be ®éditad to save bandwidth prior to trans-
mission and reconstruction. As described thus far, the Sau&WT is a band equalizer, but with
all the outputs occupying frequency space around zerodirexyu Thus the outputs are not in a form
suitable for efficient transmission, as they all overlaphie frequency domain. There are two ways
to arrange the outputs for transmission to the reconstnistystem:

1. Modulate the signals into nonoverlapping frequency band

2. Sample the system and time-multiplex the samples intdfeuneat representation.

The first method is the method of reconstruction, althoughstiparated channels can be
modulated to any desired transmission frequency and atderany manner or compressed by the
scheme mentioned above to reduce the total transmissiawidth. The second method allows
more flexibility in the representation by interleaving saesp It is also more faithful to the idea of

tiling the time-frequency plane: the bandpass filterbank quantimefrequency domain; a sampler
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guantizes the time domain. A true wavelet transform needsiamtize both. A bandpass filterbank
whose outputs are not sampled is not, strictly speaking veleatransformer.

Since the bandwidth of each channel is proportional to théecdrequency as required in
a constanty system, and the contents of each band have been shifted ddwaguency until the
band is centered around zero frequency, the most efficisatiggon in terms of the time-frequency
uncertainty relation in a sampled-data representationimes|that each frequency band be sampled
at a rate proportional to its bandwidth. The result of thegang is that each rectangle in the time-
frequency plane shown in Figure 2.1 has an equal area repirgséhe effective time and frequency
bandwidths of the Gaussian filter (with some overlap). Therlap of filter functions is depicted in
Figure 2.2. If the filter channels are sampled in the binezg-fashion shown when the channels are
centered on &g, scale, the samples can be easily time-division multiplenéala single output
stream [17].

2.7 An Analog CWT Processor

The first attempt to build a Continuous Wavelet Transforngracessor consisted primar-
ily of a continuous-time, subthreshold analog design &abed in a standard CMOS process. The
analog circuits were based on the analog VLSI techniquesribesl by Carver Mead if\nalog
VLSI and Neural Systenf$]. The underlying idea was to generate a set of expongntphced
clock (square) waveforms which would then be shaped (viifilgy) into sine and cosine pairs, and
multiplied directly with the continuous-time, continueuslued input using a translinear (analog)
multiplier.

This chip was designed in subthreshold analog as an alitegrtatusing a computer or
DSP system to perform the same transform. The advantagbs @ffgproach are reduced size and
power consumption. The resulting implementation is infiexiin terms of ability to reprogram
the type or order of the wavelet function, and requires dgaliith the problems of temperature
sensitivity, nonlinearity of analog computation, varglgrocess parameters, and noise injection
throughout the circuit (particularly that caused by thdtdigircuits generating the square wave).
As will be seen presently, not all of these problems couldy®ame sufficiently, resulting in a
move toward a more mixed-mode architecture (Chapter 2@e2ti5).
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2.8 Generating carrier sinusoids

This chip, as mentioned above, used square waves (clocalsjgrs its basis for generat-
ing sinusoids at specific frequency and phase. Specifich#yarchitecture called for each channel
center frequency to be half the value of the neighboring salrAdditionally, the architecture was
made such that each wavelet processor core would generatr éeequencies for six channels.
The master clock is applied to the system most convenienty/tevo-phase, non-overlapping signal
which becomes the first input to a cascade of toggle flip-fldpERs) made in the standard way
from two transparent latches in series. The two-phase fipsftonveniently give outputs from the
first and second latches which are® @t of phase with each other (this is necessarily true for the
input of the second stage and beyond because each of thénage-putputs of the previous stage is
forced to be 25% duty cycle, and the two phases are exactly 4@&rt. The same can be ensured
for the first stage by doubling the master clock frequencymededing the first stage with another
toggle flip-flop). The flip-flop configuration is shown in Figu.7. Signalgos(in)andsin(in) are
the pulse trains corresponding to the frequency and pha$e gine and cosine components of the
preceding channel. Signat®s(out)andsin(out)are the pulse trains which are shaped by filtering
and become the modulating signals for the current chanme rdset login ensures that the sine and

cosine parts have the correct phase relative to each otberinjpialization of the circuit.

cos(in) o— 0% _

sin(in)

cos(out) 201

-% |

¢l sin(out) @

Figure 2.7: Circuit diagram of the frequency-division ttgtiip-flops.
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2.9 Analog multiplication

Purely analog multiplication is very problematic due to lingited range of linearity in
such circuits, especially when the circuits are realizesuinthreshold CMOS technology. A stan-
dard circuit for analog multiplication of voltages is thellégirt multiplier (Figure 2.8). The Gilbert
multiplier is based on the translinear principle and in tewhlinearity and noise performance is
best implemented using bipolar transistors rather than FEJS for the critical components of the
translinear loop (for a full discussion of translinear uits and the tradeoffs between MOSFET and
bipolar devices, see Chapter 3).

vd Vvdd vdd  Vvdd Vvdd Vvdd

s [ C
Vrefl

TG [ ]Hw bl
B e T S SV Y

in2 in2 ref2
Vbias O—I

i * £

Figure 2.8: Gilbert multiplier with cascodes.

The Gilbert multiplier circuit executes a nonlinear fuoctiwhich, for input signals close
to the reference, can be described by the linear approximagi,; oc (Vini — Vres1) (Ving — Viege)-
As with most subthreshold MOS translinear circuits, theutryoltage swing is limited to a few
kT /q, or about 50 mV. and is difficult to extend by more than a factotwo or so through the
use of increasingly complicated linearization technigfds A simple derivation of this limiting
voltage can be found in Appendix A.

2.10 Wavelet Gaussian Function

In addition to allowing simple sampling of each output chelnthe use of complex de-
modulation simplifies the process of designing bandpassdithat maintain a Gaussian shape while
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allowing variable center frequency and width. Because ifpeats are first demodulated until the
center of the frequency band of interest is placed at zequémcy, it is only necessary to create
a Gaussian lowpass filter, which is one half of a Gaussiantibmplaced at zero frequency. Two
identical filters are required for the sine and cosine pdrtkeocomplex demodulation. The signals
are remodulated to their respective center frequencigsgitgconstruction using the same method
(and preferably the same hardware, if feasible). The riegubutput will be reflected symmetrically
across the modulation frequency, behaving as if it had basseu directly through a bandpass fil-
ter with Gaussian characteristics. For demodulation usele context of the continuous wavelet
transform, the lowpass filter for the demodulation can belined with the Gaussian filter required
by the wavelet transformation. Note that, according to Egan&.33, reconstructing the signal does
not require any filtering subsequent to remodulation.
We based the design of the circuit which approximates the@Galissian lowpass filter

function (as described by Grossman [13]) on a probabiliguarent. First, | present Equation (2.34)

which describes the filter transfer function of the circuit:

H(s) = Yﬁi‘“ _ (Tsi 1>n. (2.34)

This filter function describes a cascaderofirst-order lowpass filter sections in series. Although
Equation (2.46) converges to a delta function in the limitas oo for constantr, it can be shown
that whenr is replaced by an expression which maintains constant hdtttvthe transfer function
approaches the Gaussian function (2.5pas> co. A proof of this equation can be found in [31]
which shows that the Gaussian shape is an example of theackmit theorem of probability: In
other words, it is a result of the use of cascaded stages aelively independent of the shape of
the filter.

Forn sections in cascade, the relationship betweand the Gaussian bandwiditfrom

the wavelet mother function, Equation (2.5), is

1
7v/n1n(2)’

The circuit is shown in part in Fig. 2.11. Although not an a@ttural necessity, we

g =

(2.35)

chose to implement each first-order filter as a transcondoetd filter using transconductance
amplifiers operating in the subthreshold region. The tramdactance amplifiers are connected as
voltage followers, which in conjunction with the capaciadrthe output is a configuration called
a “follower-integrator.” Due to considerations of sigiatnoise ratio and the ability to generate a
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given constant from a voltage applied to the follower-integrators, we @hagascade order of five
sections.

VgaussH

T

stage 1 stage 2 stage 3 stage

— Vour(i)

VgaussL

Figure 2.11:n cascaded stages of a filter approximating a half-Gaussiaatifun, using continu-
ous-time transconductance-C filters.

The center frequencies of the filters in the filter bank aresp®&n dog, scale. Assuming
speech-quality bandwidth for the input signal, we decideat six outputs would be sufficient,
giving typical center frequencies of 9kHz, 4.5kHz, 2.25kHZ125kHz, 562.5Hz, and 281.25Hz
(unless more than one system is interleaved in the mannerilded in Section 2.22). The center
frequency of the highest-frequency filter is determined byoacillator which can be generated
either on-chip for a voltage-controlled frequency, or ciffp for a stable frequency. The center
frequencies of the rest of the filters are determined by atigidlown the oscillator appropriately.

The bandwidth of each Gaussian filter is set automaticaltit véispect to the others with
the exception of the first and last filters, which have widtgistable using two control voltages
Vgaussir andVyqyssr. In terms of the transfer function (2.46) for the filter, tr@rgmeters of the
highest- and lowest-frequency filters are fixed by theserobmtputs. 7 should be calculated to
assure that the width of each Gaussian is proportional teahe of the center frequency, as it is
not determined automatically from the other system pararset

More recently, this idea has been expanded upon by Heitras [22] for the creation of
so-called “gamma-tone” filters and filter structures whisle warefully calculated weighted feed-
back and feedforward connections to cause the filter trafghetion to reach a given accuracy of
approximation of the Gaussian shape in significantly fevages.
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2.11 Wavelet chip slice

The parallel nature of the analog wavelet computation altve VLSI layout to be gen-
erated easily by abutting slices of circuitry. The filterifugpctions are identical for the sine and
cosine parts of the transform, so slices are logically gedup pairs, with each slice containing one
transparent latch such that the pair of slices forms thdlfhiipfor dividing down the clock input to
that section. Thus the path of the frequency stepping ruriccally across all channels while the
signal path runs from left to right. In addition to genergtthe divide-by-two oscillator, each slice
is responsible for shaping (filtering) the oscillator sigiegproduce a smooth sine (or cosine) wave,
multiplying this modulating signal with the input, and fiiteg the result through a half-Gaussian-
shaped lowpass function. Finally, depending on whethesel#on is configured for decomposition
or reconstruction, the circuit samples the filter outputd muultiplexes them into a stream (decom-
position), or else aggregates all the outputs togetheradyme the final result (reconstruction).

A block diagram of decomposition and reconstruction for aelet transform processor
sine/cosine pair (single channel, or “slice”) is shown igufes 2.12 and 2.13, respectively. The
entire analog Wavelet Transform chip is shown in Fig. 2.14.

2.12 Chip Specifications

e Power Supply: +5V DCE5%

Input mean value: 2.5%-0.5V

Input p-p amplitude: 0.4V

Input frequency range: 80 Hz to 10 kHz

Number of output channels: 12 (6 pairs)

Silicon area: 1.96<10° um? (in a 2.0 micron CMOS process)

Chip package: 68-pin PLCC

The technologies used to fabricate the several versiorsedalog Continuous Wavelet
Transform processor are as follows:
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Oscillator signal in Input signal value

Channel
o Attenuate ;x\ Gaussian Real-part
=2 flip-flop and bias LPF \J Filter ~° Output
(cosine)
phase-shifted Attenuate /}(\ Gaussian Imaginary-part
: +2 flip-flop and bias LPF \"J Filter : Output
i (sine)

Figure 2.12: Wavelet decomposition block diagram for alsisgne/cosine pair.

Oscillator signal in

Channel
.................................................................................................................................................. Realpatt
O
Input
e Attenuate (cosine)
+2 flip-flop and bias LPF _
Imaginary-part
° Input
phase-shifted Attenuate (sine)
+2 flip-flop and bias LPF

Reconstruction output

Figure 2.13: Wavelet reconstruction block diagram for glgirsine/cosine pair.

Table 2.1: Technologies used for the Wavelet processors.
| Chip name | Foundry | Min. feature size Welltype| Poly |

WaveChip2 Zilog 2.0 micron twin-well | single

Z89c55ba Zilog 1.2 micron twin-well | single
WaveChip5a | Orbit 2.0 micron N-well | double
WaveChip5b | Orbit 2.0 micron P-well | double
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Oscillator signal in Input signal value

Decomposition Reconstruction
| 2ot gof A
Gaussian Real-part Real-part
Filter — Output Input
L, | phase-shifted Attenuate LPF (cosine) (cosine)
+2 flip-flop and bias -
Gaussian Imaginary-  !maginary-
Filter part Output E’;g{;)npm °
+—~ 2 flip-flop | f;‘%nglaaf e (sine)
Gaussian Real-part Real-part
Filter — Output Input Recon-
L, phase-shifted Attenuate LPF (cosine) (cosine) > structed
+2 flip-flop and bias - output
Gaussian Imaginary-  !maginary-
Filter part Output ~ Part Input °
(sine) (sine)
-2 fli Attenuate J
+2 flip-flop and bias | LPF — |
Gaussian eal-part Real-part
Filter — Output Input
phase-shifted Attenuate (cosine) (cosine)
+2 flip-flop andbias | LPF . —
Gaussian Imaginary- ~ 'maginary-
Filter part Output ~ Part Input °
(sine) (sine)

Figure 2.14: Wavelet Transform Chip block diagram.

2.13 Limitations of the Architecture

The major drawback of this analog architecture involvesu$e of filtered square wave
signals as the modulating sinusoids. The use of a square agm@emodulation carrier is well-
documented (see, for example, Horowitz & Hill, 2nd ed., pi)428]. However, its use is restricted
to modulation in the usual sense wherein a low-frequenayasig pushed up into a high-frequency
band. The Fourier series describing a square wave containsfinite series of odd harmonics
beginning with the fundamental, which attenuates only/as wheren is the harmonic number (1,
3, 5, ...). The modulation performed by multiplying the sguevave by the input signal can be
broken down by superposition into the multiplication of lead the square wave harmonics with
the input. If the destination band (carrier frequency) igéeenough, then all of the intermodulation
products (multiplication of the input by all harmonics gexahan the fundamental) are very far out
of band and can be easily attenuated with a simple filter. kknfately, if the function performed
is demodulation instead of modulation, then by definitioa tarrier frequency is in the band of
the signal and so any of its harmonics may be also. Consdgugniérmodulation products will
be in-band and cannot be filtered out. Shaping a square wava isinusoid by filtering out the
higher harmonics is a difficult prospect at best involvingnpticated high-order elliptic filters;
the filter cutoff must be prohibitively sharp to pass the faméntal frequency but attenuate the

third harmonic to reasonable levels for clean signal preings(at least 40 to 50 dB for most audio
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applications; 60 to 70 dB for high fidelity). Complicateddiltarchitectures were not addressed in
this series of wavelet processors, and so results did nch i@aceptable levels of performance.

2.14 \Variations on an Architecture

One interesting variation on this design was created aneldeed by Moreira-Tamayet
al. [23, 24] at Texas A&M University. Using primarily the samengplex demodulation technique
based on our architecture, the authors translated the gmtiblem into the time domain. In place
of the wavelet Gaussian function, they used a rectified eggilso known as Blanning windowa
function which is reasonably easy to generate in the timeailorand which is reasonably close to
the Gaussian in its time and frequency support. Its timgufeacy product is approximately 0.513,
or 2.6% larger than the minimum area (1/2) of the Gaussiare réhtified cosine itself becomes
the envelope function; the wavelet function itself is gated by multiplying the rectified cosine
by a sinusoid of higher frequency. Effectively, this is a bleudemodulation, and simplifies the
implementation somewhat by making use of the same hardwelnéecture for generating both the
Gaussian (or in this case, Hanning) envelope and the waveldtlating function. Their wavelet
family can be described by the function:

Y(t) = Ae~Jwet (1 4 mcos (wpt)) , —T <wpt < T (2.36)

where this function is repeated (chained) in time, and trstesy repeated over dilations of the
frequency. The wavelet computation on an input functf¢t) for frequency scale and time shift

CWT(f,a,b) = \/La /;f f(t)- (g (t ; b) v (t ; b)) dt (2.37)

whereg(t) = exp (—jw,t) is implemented as a complex demodulation by separatinguitetién

b is written

into sin (w.t) andcos (w.t), anduv(t) = 0.5(1 + m cos (wyt)). The architecture of Moreira-Tamayo
et al. also follows our architecture in its use of a master clockddig down by flip-flops for gen-
eration of multiple frequency square wave signals subsetyuéltered to generate the sinusoid
modulator. However, the system is built at the componerdllether than as a VLSI processor.
The analog multiplications are implemented with MC1494laganultiplier integrated circuits.
The integration operation in Equation (2.37) is implemdriby a transconductance-C circuit. A
slightly simplified block diagram of one channel of the systis shown in Figure 2.15. Only the
wavelet decomposition was reported in [23]. Compare Figui® to the block diagram of the
decomposition half of our wavelet decomposition architest Figure 2.12.
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Oscillator signal in Input signal value

Channel

. Attenuate 732\ Sample & Real-part
=2 flip-flop and bias X & _[ | Hold —° Output

DC i (cosine)

(m) T g

. Attenuate .
+k flip-flop and bias delay '|> trigger
phase-shifted Attenuate Sample & Imaginary-part
+2 flip-flop and bias @ X I | Hold T Output
i (sine)

Figure 2.15: Architecture of Moreira-Tamagoal.

The Moreira-Tamayo architecture quite nicely demonsséréite duality of the wavelet
transform: Because it incorporates both the time domainthedrequency domain, efficient ar-
chitectures can be realized in either one. The responsetbfdystems to the same input is the

same.

2.15 A Mixed-Mode Wavelet Processor

Several hardware implementations of the Continuous WaVedesform and related band-
pass filter bank architectures have been reported in reeams y17, 19, 23], including the analog
architecture discussed at the beginning of this chaptes.ré&maining sections of the chapter high-
light a novel architecture we developed for the continuoaselet transform processor which is
unique in its encoding of the decomposition output and ussvefsampling techniques.

The goal of the new architecture was to overcome the obvicawlzhcks of the analog
subthreshold MOS circuits, namely the quality of the cassisusoid signal and the linearity of the
modulation multiplication. The new architecture reliesrmon digital processing and as such is
more appropriately considered a “mixed-mode” design.

Other than the novel circuit methods used, the new desigiineethe essential charac-
teristics of the original wavelet architecture. To recapePprocessor performs a demodulation of
the audio-frequency input signal in parallel acrédéschannels, where the channels are adjacent
with minimal overlap, cover the audio frequency band ofriesg, and are centered on a logarithmic
scale. The process of demodulation shifts the signal frezjas from each channel center frequency
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down to zero. Each demodulation result is then filtered bywgp#ss version of the wavelet func-
tion, which also serves as the postmultiplication filter ttoe demodulator. Signal information on
both sides of the channel center frequency is preservedibyg asmplex demodulation, in which
each channel is split into two parts, with the modulatingusoid of one being 90out of phase
with that of the other. The CWT is invertible: The reconstimt process consists of modulating
the channel outputs back to their respective center fregegnand summing them all together. The
decomposition method is shown in Figure 2.5 and the reaactgin method in Figure 2.6.

The wavelet nature of the output allows the channel outputset efficiently encoded.
The outputs of the decomposition are time sampled at the isyrpte of each channel, and all the
sampled channel outputs are time-multiplexed into a sietfleam. The reconstruction processor
decodes the data stream prior to reconstruction.

As we developed the oversampling architecture describéldeiprevious section, it be-
came clear that, as the carrier signal was both binary arwetéstime based on a well-defined
synchronous clock, the most efficient architecture wouldhtaa the discrete-time nature of the
carrier, and retain a digital mode of processing througlasutnuch of the architecture as possible.
Following this line of reasoning leads to an elegant andeexély efficient design for a complex
demodulation multiplier and Gaussian filter.

In the introduction to this chapter, | mentioned that by gsiomplex demodulation, very
accurate center frequencies for the bandpass functiomedditiectly from the carrier signal fre-
guency, which itself is derived from a quartz oscillator.the previous section, the wavelet trans-
form architecture was developed, but the circuits usingetehitecture could not achieve acceptable
performance due to intermodulation products caused bylyatienuated harmonics of the carrier
signal. Analog multipliers built from analog circuits bytoee have a limited range of operation due
to nonlinearities in the circuit function. It remains to bekined how to get from the frequency-
accurate, digital-domain square wave clock signal to anrate and repeatable sinusoidal signal.
That is the purpose of this section.

We developed a method for sinusoidal modulation of analggads which does not re-
quire an explicit multiplication, and hinges on generatidraccurate analog sine wave using the
mixed-mode technique of oversampling.

As demonstrated by repeated failure of performance of pusly fabricated versions of
the wavelet processor, obtaining a sinusoidal signal byéss filtering a square wave introduces
too much distortion to make the system usable. The moduldtinction is sensitive to distortion
harmonics, which get multiplied by the input signal and @& many separate modulations about
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many different frequency axes. Each produces its own sundiffiedence components, and some
are bound to end up in the signal band at the system outputrdir ¢o get predictable system
performance, it is necessary to have a sinusoid carrieakigith a fixed and controllable amount
of harmonic distortion. To this end we considered the pdgyilof generating an oversampled
version of a sinusoid using a delta-sigma modulator.

The delta-sigma circuit of Let al. [26], an excellent example of the method, begins with
a standard resonator system consisting of a simple loop ofittegrators. Implemented in the
digital (z) domain, each integrator requires a delay and accumulatatmw, and one multiplication
by a constant coefficient. The delta-sigma method elimg#te multi-bit multiplications by in-
serting a delta-sigma modulator into the loop which rengars of the resonator circuit a single-bit
value, where the single bit represents an oversampledadaloscillation. Figure 2.16 shows the
architecture, where no actual multiplications are reghi@ne multiplication is reduced to a multi-
plexing operation, and the other in the digital domain istashift operation. The remainder of the
system still requires precision digital delay and accumeutgperations, as does the implementation

of the second-order delta-sigma modulator.

LPF —= Output

Figure 2.16: The analog oscillator architecture ofdtwal.[26] containing a 2nd-order delta-sigma
modulator.

Eventually it became obvious to us that our system is muclersecific than the general
delta-sigma method described above. More to the point, ¢fta-digma method is rather a bit of
overkill for the purpose of generating a sine wave, pariidulwhen only a finite set of frequencies
is required rather than a full range of arbitrary values. \Wechto generate a number of sinusoids
of known fixed frequency and amplitude. Presumably therstexd fixed sequence of bits which
describes the optimai-times oversampled sinusoid in the context of our systenafgiven value
of n. If the optimal sequence can be determined, then it has adixexint of harmonic distortion
which should decrease with increasings the oversampled sequence contains increasing amount
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of information about the encoded signal.

The above phrase “in the context of our system” is criticahit it is not to be assumed
that the same sequence is optimal for every possible impigtien. The frequency-domain repre-
sentation of the original (unfiltered) single-bit oversd@tisequence can be determined by convert-
ing the bit sequence directly to a sequence of voltages ititteedomain according to the following

rules:

e bits "1’ are represented by some fixed positive voltage
e bits ‘0’ are represented by some fixed negative voltage

e each voltage is applied for a fixed length of timsuch that the entire sequencerobits has
lengthT = nt.

We then compute the FFT of this sequence. A sequence whialradely encodes a
sinusoid should show a large FFT component at the frequetbg sinusoid (which without loss of
generality we consider to be the inverse of the sequencéigefyg= 1/7°), show a highly attenuated
response at all frequencies close to the fundamental, Wwé&hharmonic distortion increasing at
large frequencies (an inherent property of oversampletbsy The quality of the sinusoid in the
context of the system cannot be determined from this FFTItréBe oversampled sequence must
be lowpass filtered to retrieve the encoded signal, and sguhlity of the resulting signal depends
both on the binary sequence used and the properties of thma#safunction used to retrieve the
analog signal from its oversampled representation. Furtbee, the input signal must be prefiltered
with a lowpass to attenuate components which would mix withdversampled sequence and add
to the resulting harmonic distortion. The point is that tlenhonic distortion is determined by the
process of the modulation itself—specifically, the way thafuses frequencies of the input to mix
with harmonic distortion components of the carrier to bee@rror components at the output—and
so the binary sequence required for optimal performanagtimmately tied to the system itself.

One fallout of this consideration is that the bit sequencedu® encode the sinusoid
cannot be determined until the system is known in detail. l@nather hand, it is not possible to
know the exact requirements for the filtering system (fotanse, size requirement of the VLSI
layout) until we know what the sequence is. Some iterati@mshe expected before a solution is
agreed upon. This fact makes it necessary to have a methatl wéun fairly rapidly determine the

optimal sequence.
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It should be clear at once that a full search of thbit space of the sequence is an “np-
hard” problem, and furthermore that each search involvesge lamount of computation for simu-
lating the antialiasing filter and output filter, computingFT, and measuring harmonic distortion.
For the purpose of finding the optimal sequence, we define drdonistortion as the ratio of the
amplitude of the largest distortion product to the amplitd the fundamental frequency.

On the other hand, it should also be clear that there are aewohfactors in our favor:

1. Inverted sequences have the same response as theinveoredforms, and do not need to be

investigated. This is also true of reversed sequences.

2. Sinusoids have quarter-wave symmetry, and thereforeatygences should also (symmetric
signals can be closely approximated by non-symmetric semse as is generally the case in
a 2nd-order delta-sigma system, but there is no reason torexihis space). This cuts the

search space by a factor of four.

3. Only a small subset @& sequences look anything like a sinusoid, allowing the [biggiof

heuristic approaches.

The first consideration involves generating a quarter segpjeand then generating the
other three quarters by (in turn) reversing the sequeneetting and reversing, and reversing once
again. A reasonable heuristic approach is to start with avkreequence which looks something
like a sinusoid, namely a square wave (for which the first iguagequence is all ‘1’ bits). From
that point we need an iterative method which will explore lttwal space of nearby bit sequences
(‘nearby’ meaning in a Hamming distance sense) which witlp@fully) converge quickly to a
solution without encountering local minima along the way.

As is often true for these sorts of methods, we do not presenhi@ve we even attempted)

a proof of convergence. Our method successfully found ljiseces which exceeded the system
constraints and which met with our approvaé( the sequence was short enough that it was con-

ceivable to design a simple sequence generator to fit theletaystem on a 2mnx 2mm layout).

2.16 Details of the Bit-Sequence-Finding Algorithm

It is possible to ascertain some properties of the solutifore running the algorithm.

For instance, the average of ones and zeros in the bit seguaust match the integration under the
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sinusoid, and the difference between the two gives a roudicdtion of the minimum distortion
possible using a length-sequence.

The way we have defined the system in Section 2.15, a DC valaerofis represented
exactly by a bit sequence of alternating ones and zera®ltage). A DC value of one is represented
exactly by a bit sequence of all ones. Given this considarathe expected ratio of ones to zeros
in a bit sequence in the first case is 1/2, and in the secondlcdsalowing this line of reasoning,
the expected ratio of ones to zeros in the first quarter ofitltesequence is

/05 (1 + 0.5 sinz)da. (2.38)

The total integration divided by the interval comeslj@ + 1/, or 0.8183. This multi-
plied by 64 bits, for example, yields an expected value ofvben 52 and 53 ‘one’ bits, leaving 12
or 11 ‘zero’ bits. This is what we can expect the makeup of-opéimal sequences to be.

Comparing the integration under the curve to the instasasmaverage of the bit sequence
at each step and then determining the next bit of the sequercedingly is exactly the method of
sigma-delta modulation. The bit sequence produced is ahwhgnging from cycle to cycle due to
the residual error between the filtered bit sequence andtbgral under the sine curve, which is
never zero.

A sequence of, bits which is repeated exactly on every cycle can never aehiee
accuracy of am-bit delta-sigma modulator. On the other handpascreases, so does the accuracy,
so that if the system requirement is a maximum fixed valuetaf tmrmonic distortion, there exists
a fixed bit sequence of some minimum lengtlvhich will meet that requirement.

The problem in finding the sequence is this: A sigma-deltéesyss deterministic: The
next bit in the output sequence is an exact function of theeotistate of the system. But a sigma-
delta-like method cannot be used to find an optimal fixed sezpjebecause changing any bit in the
fixed sequence changes the past, present, and future sthtegyfstem. Instead, it is necessary to
search the space 8f bit sequences to find one which achieves the desired accuracy

Knowing the expected number of ‘one’ and ‘zero’ bits in thguence still doesn't help
much in finding the optimal sequence: The set of all combimatiofrn ‘zero’ bits in a sequence of
lengthn remains computationally intractable for reasonable \sabfe: (such as 64).

The modulation system for the CWT, when using the oversaingdguence method, is

described by
y(t) = [(z(t) * g(t)) - s'(£)] * h(?), (2.39)

43



whereg(t) the impulse response of the lowpass prefilter & is the postmultiplication filter
as before (Section 2.4). The binary sequesi¢g) is assumed periodic with quarter-wave symme-
try, and therefore can be described in the frequency domgaia Bourier series containing only

harmonics of odd orders iny:

Sw) = 3 Sklw)., 2.40)
k=0
S'k(w) = jep [0 (w—(2k + Dwpy) — 6 (w+ (2k + 1)wp)] - (2.41)

The fundamental componeft,(w) corresponds to the desired sinusoidal sigtta).

Figure 2.17 shows how the two systems operate under the pisanthat the lowpass
filter functions H (w) and G (w) are ideal,i.e, flat in the passband and with infinite rolloff at the
cutoff frequency. Under this assumption, it can be seen filoenfigures that an arbitrary input
spectrumX (w) corresponding to the time-domain inpuft) produces the same outputt) for
both systems if and only if the prefilter bandwidth B#(w)) is constrained by

wo + BW(H(w)) < BW(G(w)) < 3wy — BW(H(w)) . (2.42)

if the last inequality is not satisfied, convolution producf X (w) xS, (w) for &£ > 0 will be aliased
into the output.

In reality, the filtersH (w) and G(w) have finite rolloffs, and the equivalence between
the systems in Figure 2.17 is only approximate. The qualitthe approximation depends on
the harmonic coefficients, corresponding to the binary sequence, which can be optirfize
minimum distortion. There is a trade-off between the coxipteof the sequence and that of the
filters G and H, as illustrated in Section 2.18.

2.17 Sequence generation

The output spectrum generated by the modulation schemainsmttermodulation prod-
ucts between the prefiltered inpGY{w) - X (w) and the harmonics of’j(w), with terms of the
form

jer G (w=£ (2k + 1wp) - X (w £ (2k + 1)wy) - H(w). (2.43)

Only the fundamental terrh = 0 is desired, and distortion arises from the higher-ordesrimbd-
ulation productsi > 0. To reduce distortion, the coefficients need to be small fok > 0,
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Figure 2.17:Top Demodulation of an inpuk in the frequency domain with a perfect sine wae
and ideal modulation filteff. Bottom Demodulation of an inpuk in the frequency domain with
an oversampled sine wa# using an ideal smoothing filt&¥ and modulation filteirf .

except for large values df for which the terms of (2.43) are reasonably small due to ttexnaa-
tion by the prefilterG. In other words, the low-frequency components of the birssaguence’(t)
need to approximate the sine waye) as closely as possible. Qualitatively, this correspondmto
oversampled noise-shaped sine wave, as produced by thesigtia modulator method [26].

Techniques for deriving periodic sequences with several aesmall harmonic compo-
nents ofc;, are presented in [33]. We formulate the problem of finding jgimaal binary sequence
directly from a minimum distortion criterion on the interthdation components (2.43).

In general, the amount of distortion is input dependent,amstimptions need to be made
on X (w) to formulate an optimization criterion. Our criterion isrt@aximize the ratio of energy in
the fundamental harmonic modulation componént=(0) to the combined energy of the distortion
componentsi > 0). Assuming a narrow bandwidth @f (w) and an input spectruX (w) which
in the worst case is flat in amplitude, the criterion becomes:

¢ 1G(wo)[*

Maximize :

(2.44)

o0

> &G ((2k + 1) wo)[?
k=1

which is equivalent to minimizing the harmonic distortiohtbbe sequence’(t), filtered with the
same prefilteiG(w). The criterion can be applied, in principle, to select thémoal bit sequence
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s'(nT), forn = 1... N. With quarter-wave symmetry, only//4 bits (one quadrant) need to be
determined. Still, this problem has a combinatorial coxipfeand becomes intractable for large
N. We obtain approximate solutions using a technique oftiterdolock optimization, where a full

search is repeatedly conducted over randomly selectedsdbtifcconsecutive bits in the sequence.

Appendix B lists a short Matlab program which performs thecktiterative sequence
search. The procedure for determining the harmonic distois as follows: A quarter-wave bit
sequence is expanded by inverting and reversal into a fulevead described in terms of values
+1 and—1. An FFT is applied to this sequence and its magnitude cordputbe resulting spec-
trum is multiplied by the frequency-domain transfer fuantiof the lowpass filter (described as an
attenuation coefficient per FFT bin). Then we can directiypate total harmonic distortion as the
magnitude of the second FFT bin (the signal) divided by tha efithe magnitudes of all the other
FFT bins (the distortion).

In lieu of computing every one of the"* possible sequences, we combine exhaustive
search with a random perturbative method. The exhaustielsds performed over a tractable
subspace ofn bits, wherem < n (generally,m < 16 to compute in reasonable time), where the
remainingn — m bits are held fixed. On each iteration, the starting poinhefdubsequence to ex-
haustively search is chosen at random, the search spa€esgfquences computed for a minimum,
then the minimizing sequence is chosen as the new sequethtieegorocess is repeated. There is no
guarantee of success, and in practice the error surfade iwith local minima. Usually, however,
the algorithm produces acceptable results, meaning tarahdnic distortion of-60 to —70dB,
which suffices for most applications. The formulation of gigorithm leaves open the possibility
of variants based on genetic algorithms: at every iteratdfcthe algorithm, the best solutions are
kept rather than than the single best solution, allowingufadfon statistics to determine the course
of the optimization. By searching a broader solution spa@aeh step, the system is less likely to

become trapped in local minima, and the convergence tinigngisantly reduced.

2.18 Results and implementation

We demonstrate the principle with the following example dedcribe a simple and ele-
gant implementation. The filte¥ (w) is third order, implemented as a cascade of three singke-pol
filter stages, each pole locatedzat= 15/16. The total sequence lengthé = 256. Figure 2.19
shows the 64 bits of the first quarter of the sequence obtaisied the iterative block optimization
method with block size 8. Figure 2.20 shows the FFT resultshie filtered and unfiltered binary
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sequences. All harmonics of the filtered sequence are manegih dB below the fundamental. The

magnitude of the prime harmonic of the sequence is apprd&lynd.02, which is within 2% of

unity. This indicates that if the binary sequence is madeotibge levelstV;,,, then the resulting

sine wave will have a zero-to-peak amplitude within 294/f,.

Sine sequence and filtered sine wave output
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Figure 2.18: The oversampled sine sequence.
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Figure 2.19: Optimized 64-bit oversampled sine sequense giiadrant.

The advantages of using an oversampled modulation sequaties than a simpler bi-

nary sequence can be appreciated by following comparisanobtain the same 60 dB linearity

performance with, say, a square wave modulator, a prericétifpn filter G with much sharper

rolloff such as a fourth-order Chebyshev or a 6th-order &@utbrth would be required to compen-
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Figure 2.20: Frequency domain properties of the raynaqd filtered X) bit sequences.

sate for the sizable harmonics in the square wave. Suchrafittédd be more complicated to build
than the simple cascade of single-pole filters in the aboaeele, and would be more sensitive to
mismatches in the implementation. On the other hand, thesargled sequence is fairly easy to
generate, as outlined below.

The first-quadrant sequence of Figure 2.19 consists of Idszerd 53 ones, as expected
from the integral calculation in Equation 2.38. The asymynatlows a simple implementation
using a sparse address decoder. A binary counter countsOftom — 1, wherer is the length of
one quarter of the full binary sequence. The address decdared-‘or’ implementation of NMOS
transistors and a pMOS pullup device with a small layoutgdat, generates the 11 ‘zero’ bits at
the proper points of the count. The inversion and reverspeyations needed to obtain the rest of
the full sequence can be elegantly realized by using a gvdg-count rather than a binary count.
In ann-bit gray code, as illustrated in Figure 2.21, the lower 2 bits describe a sequence which
counts out forwards and then backwards. The inversion ofdiggience is determined through an
exclusive-or operation of the sequence bit with théh bit of the gray-code counter. It is also
quite straightforward to generate the addresses of a seg@hout of phase with the original, for
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complex modulation with both sine and cosine componentqdsforming inversion as above but
using bitn — 1 of the counter. One technigue is to use a sigma-delta manulattransform an
arbitrary signal into binary form [25, 26]. However, in these of modulation the (carrier) signal is
knowna priori, so a sigma-delta modulator is unnecessary and can be edpdtgca simple digital
circuit which provides the multiplexer with a predeternadrfexed sequence.

00000
00001
00011
1
88218 quadrant 1
00111
00101
00100
01100
01101
01111
01110
Moo quadrant 2
01011
01001
01000
11000
11001
11011
11010
N quadrant 3
11111
11101
11100
10100
10101
10111
18318 quadrant 4
10011
10001
10000

If_ sign bit for cosine
sign hit for sine

Figure 2.21: Use of Gray code to generate sine and cosinesees!

2.19 Modulation Multiplier

The previous section described a method by which an accsireevave can be generated
by filtering an oversampled binary sequence. Utilizing teehnique immediately alleviates one of
the two major problems of the analog wavelet processor. Sdttion addresses the other problem,
that of producing a linear multiplication of the input withet sinusoidal carrier signal.

Because implementation of the demodulation multiplicatiequires multiplication of an
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arbitrary continuous-valued input withkaownperiodic function (the sine wave), we are able to use
the oversampled sine sequence directly to achieve a higilgsi analog multiplier.

Simple but practical modulation schemes make use of migiitsbn of a continuous-
valued signal and a binary-valued signal. An exact muttgilon of an arbitrary input by a binary-
valued (1) function can be realized as a multiplexer which is cotdtbby the function and alter-
nates between the input and its inverse. This is shown inr&@22. In the figure, the multiplexer is

1

0
Control

AVAV,
Inpute /I/\I\/I/

Mux -
/ Multiply

Figure 2.22: Multiplexingvs. Multiplying.

LPF |—o Output

controlled by a square wave [28]. The square wave is used ag@oximation to a sine wave with
all harmonics other than the fundamental considered totwer“éerms. As mentioned in the previ-
ous section, this works as long as the intermodulation potsdef the input signal and these “error”
harmonics fall well outside of the passband of the final tesitéer the usual lowpass filtering.

In the same manner as the square wave example, any arbitrany Isequence can be
used as a control, insofar as any unwanted intermodulatisaupts fall outside the passband of the
postmultiplication filter. Since the purpose of oversardpkepresentations of waveforms is to push
unwanted harmonics as far away as possible from the harsohibe desired waveform, binary-
valued oversampled representations work extremely welkdce of the square wave in Figure 2.22.
It is assumed that the oversampling noise is negligible éinfthquency band of interest, and can

therefore be filtered from the multiplication output.

2.20 Switch-Cap Wavelet Gaussian Function

The circuit which approximates a Gaussian filter is basedhensame architecture as
described in Section 2.10 (shown in Figure 2.11), which isumm based on the Central Limit

Theorem of statistics: A half-Gaussian profile is producgaibinfinite cascade of lowpass filters.
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A finite cascade of simple filters will approximate the Gaasdransfer function to the degree of
accuracy required, provided that there is enough spaceeitVLgI layout to accommodate the
number of filters required.

Once it was determined that the output of the modulationipligation would be a syn-
chronous discrete-time signal, the decision was made togehéhe continuous time filters into
switched capacitor filters. This is done for three reasons:

e The discrete-time system scales correctly to any clockdspeethe system can be run accu-
rately either with real-time inputs or with non-real-tinmputs, such as test inputs generated
by a computer. Non-real-time inputs do not even need to mElgtsynchronous.

e The switched capacitor architecture has much larger limgart and output ranges than the
transconductance-C filters used in the analog architecture

e The bandwidth is controlled digitally and so can be compufieettly from the system clock
driving the center-frequency oscillators, as opposed tagban independently-controlled
variable.

As with the continuous-time filter architecture, it is onklyagssary to create one half of a
Gaussian centered around zero. The same argument relatimg €Central Limit Theorem applies,
so the switched capacitor filter retains the architecture st of cascaded first-order lowpass sec-
tions. Figure (2.23) shows a section of the filter we desigrigds circuit is an RC lowpass filter
using a simple switched capacitor simulated resistor [2fg filter design is a discrete-time circuit
and directly implements the{transformed) lowpass function through distribution chide:

. <1Jlra>7 (2.45)
Vour = B‘/inz_% + (1 - B) Vvoutz_1 (246)

where in the figurep; and ¢, are nonoverlapping clock signals of peri@dwhich maps to the

z-domain unit delay. This circuit maps to an equivalent¢main) RC lowpass filter bRC = oT'.
The Gaussian lowpass filter consists of a cascadesactions, which have a combined
transfer function which converges to a Gaussian in the limit co. The choice of the number of
sections is a tradeoff between the accuracy of the filter reitpect to a true Gaussian and the delay
(and also noise) incurred by a signal passing through theadas We chose a cascade of eight
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Figure 2.23: Single discrete-time lowpass filter section.

sections due to a primary constraint of accuracy. For eigiges, the resulting transfer function
matches a true Gaussian to abe@0 dB.

The center frequencies of the effective bandpass functiwesdetermined by the fre-
qguency of the modulator sine waves (described below), wharehspaced on kg, scale. The
bandwidth of each wavelet filter is determined by the cutadfjfiency of the switched capacitor
lowpass filter, and therefore is proportional to the peribitsodriving two-phase clock. The fre-
guency of this clock signal, like the clock which generatesdversampled carrier signal, is spaced
on alog, scale. The fixed relationship between the carrier and thpds® cutoff gives the wavelet
filterbank a constant} characteristic. The clock frequency can be derived fronctbek driving
the modulator sequence generator (in our implementatios,is accomplished by dividing down
the master clock off-chip). The bandwidths typically aressethat adjacent channels overlap at the
half-magnitude point of the Gaussian function.

2.21 Output Time Multiplexing

Outputs of the Gaussian filter sections should be samplednaraer which generates
the time-frequency distribution shown in Figure 2.1. Thealy-tree time multiplexing shown is
quite easy to generate from a Gray code. As shown in Figurg 2céhtrol signals for taking the
output from each wavelet channel can be achieved by a cowhieh uses two-phase clocking and
generates Gray code as output. This control signal is thgdrisignalg,, for each Gray code digit
Q;. It can be seen that ib; controls sampling of Channel %y, controls sampling of Channel
2, etc, then Channel 1 is sampled twice as often as Channel 2, whadmpled twice as often as

Channel 3, and so forth, and none of the signals overlap. @medot per sequence of outputs is
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unused, but could be used to encode the DC level of the inpate tiat a Gray code counter is as
simple to design as a binary counter. In the usual implentientaf a binary counter as a cascade
of toggle flip-flops where each toggle flip-flop is a pair of sparent latches in series, the output
of the first latch in each pair encodes a Gray code while theubwtf the second latch in each pair
encodes the binary sequence.

O M M M M M M 1 1 [
©, =1 [ = = = [~ =1 I
Q, 1 i i i i i i i i
Oz M M M M
©r = = = = =
Q, ) ) ) ) )
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Qs lSync

Output I O O D

Figure 2.24: A scheme for controlling time-multiplexingtbe outputs.

The same method is used throughout the chip to generatesclagich ensure that the
modulator frequencies and filter bandwidths differ by adacif 2 for each channel. An additional
bonus of using Gray code is that digital noise is kept low heeaonly one channel is clocked at a

time, and power consumption is kept to a minimum due to thatesddven nature of the process.

2.22 Wavelet chip slice

The parallel nature of the analog wavelet computation mtdeeship easy to create using
abutting slices of circuitry. We built a bank of eight slicEhannels), each containing the logic
to divide down the incoming clock signals, generate the ame cosine sequences, multiply these
modulating signals with the chip inputs, filter the resulttwa Gaussian-shaped function, and time-
multiplex the outputs on two buses (one for sine, one forneogiarts). | devised a simple way
to expand the system from eight to sixteen channels covénmgame total frequency span: In a
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sixteen channel system, each channel has a center frequalneywhich isy/2 of the neighboring
channel, with the bandwidth of each channel narrowed by @ifaxf two to account for the fact
that there are twice as many channels squeezed into the samhdréquency span. The value
of /2 = 1.41421... is approximated reasonably well by the integer fractigh = 1.4, which

is only about 1.0% low. The sixteen-channel system is edabjestarting with a master clock
which is first divided down by five and by seven, each resulbbeng the master clock for one
eight-channel section. The outputs of each eight-charewtios are interleaved, and the sampling
scheme of Figure 2.1 must be modified so that the timestepgsahred so as to allow both sections
to be sampled. The sixteen-channel architecture is showigimre 2.25. Wavelet decompositions

of any multiple of eight channels can be realized in a sinmlanner.

Master 2-phase clock
0y 80kHz

16kHz

8kHz

4kHz

2kHz

1kHz

500Hz

250Hz

125Hz

Figure 2.25: Sixteen-channel architecture using the ¥ frequency ratio.

Decomposition and reconstruction functions are similartherefore are able to share the
same multiplier and filter circuitry, and the chip can be agufed for either function. Reconstruc-
tion requires sample and hold circuitry on the front end tondkiplex the sine and cosine inputs,

and a capacitive adder at the output. During reconstructim Gaussian filters do not shape the
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signal but are used only to reject the high-frequency naigput of the multiplier. A block diagram

showing two channels of the Wavelet Transform chip is shawkigure 2.26.
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Figure 2.26: The wavelet chip, block diagram.

The circuit layout of the CWT processor fits two sections @heichannels each on a
single 4 mmx6 mm die in a 2uam CMOS p-well process, packaged in an 84-pin PGA. Figure 2.27
is a photomicrograph of the integrated circuit. Test rastéported here are from this chip and a

separate test chip containing a single channel.

2.23 Experimental Results

In atest of the modulation multiplication (including thespmultiplication filter), the sinu-
soid modulator is multiplied by a constant input. A binargsence representing the oversampled
sinusoid is produced at the multiplexer output, and is shmembtinto a sine wave by the lowpass
filter. Figure 2.20 shows the FFT of the test chip modulatiatpot before (8”) and after (X”)
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Figure 2.27: Photomicrograph of the mixed-mode continumaselet transform processor, a
4 mmx 6 mm die size fabricated in atin CMOS p-well process.
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lowpass filtering. Distortion components of the binary sswe are attenuated by the filter to below
—60dB.

Figure 2.28 is an oscilloscope photograph showing the defatdg hardware in action.
The top trace is the input signal, a sine wave generated bydidm generator for the purposes of
evaluating the system. The middle trace is the result ofipiyitg the input by the binary sequence.
The function flips rapidly from positive to negative voltagvhich is too fast to be captured in the
oscilloscope photograph where it appears to be two oveargpginusoids. The bottom trace is
the output after filtering through the Gaussian filters, and $inusoid of a frequency which is the
difference between the input and the carrier. The bottoretia jagged due to the discrete-time
nature of the switched capacitor hardware. Because theitistpampled at the same rate prior to
time-division multiplexing into the output stream, thesend need at this point to apply a smoothing
filter to the output.

Figure 2.28: Signal demodulation using the wavelet chipe #dp trace is the input signal. The
middle trace is the input multiplied by the binary sequentle bottom trace is the output after
filtering.

Figures 2.29 and 2.30 show the measured transfer functiagr{itude and phase) of the
Gaussian filter, a cascade of eight single-pole switchedaitap filters, as compared to the predicted
result for an ideal eight-stage lowpass filter cascade. Bath is normalized to the clock frequency
of the filter switches, showing that the shape of the filtentependent of the corner frequency.
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Figure 2.29: Gaussian filter magnitude response: predatddnmeasured.

The mismatch between channels of a sixteen-channel waleteimposition (the setup
of which is described in the previous section) was tested égsuring the peak-to-peak magnitude
of the output of each channes$.the system input frequency. This measurement clearly skiosvs
bandpass nature of the wavelet channels. The response &Gfsheight channels of a sixteen-
channel wavelet output (channel frequencies spaced onélsgale) to a single sine wave input
of variable frequency is plotted in Figure 2.31, along whik theoretical response (solid lines) in
which the Gaussian function is approximated by cascadegdses/filters as it is on the chip. The
center frequency of each channel is exact, as it must be hgndete mismatch between filter
bandwidths is negligible, and the mismatch in amplitudecteatable.

2.24 Extensions of the Research

It is possible to apply the same complex demodulation schamaesystem designed to
create ararbitrary mapping of the time-frequency plane, which unlike thosdategd in Figure 1.1,

has no regular structure, but a structure determined byn8taritaneous information content of the
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Figure 2.30: Gaussian filter phase response: predicted aadured.
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Figure 2.31: Wavelet responses to isolated sine wave input.
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input signal itself. One such possible instantaneouslymaed map is depicted in Figure 2.32. The
purpose of such a mapping is to optimally isolate the infdimmecontent of the input signal in order
to minimize the amount of bandwidth at the output. For examniblthe input signal were a pure
tone, then the output would be restricted to a single filtemafimum bandwidth and maximum
timespan, sampled appropriately. Although algorithmsamgute the optimal arbitrary coverage
of the time-frequency plane are difficult to derive (formaiia [15] are nonintuitive and not recog-
nizably amenable to hardware implementation), a systertd qmatentially be designed based on

heuristic methods.

Frequency

Time

Figure 2.32: An arbitrary tiling of the time-frequency péan

Another possible extension of the work consists of exptpafgorithms which can make
use of the demodulated outputs for acoustic pattern (sfsmeid) recognition applications. One
benefit of the wavelet processes a standard filterbank approach normally used for speedurec
nition applications is that the wavelet output preservessphtinformation in the orthogonal sine and
cosine outputs. Phase information does play an importémireome speech events and many other
kinds of acoustic events (such as music and sonar), and maselleo the advantage of recognition
systems. Another benefit, when the wavelet sampling schemsed, is that the communication
bandwidth required between the filterbank and the recagnilystem is greatly reduced, unlike
standard filterbanks in which all channels are sampled asah®e rate or are not demodulated to
reduce the total required bandwidth for sampling. In anyagibn in which the frontend processor
cannot be close to the recognition system (or other backesakgsor), this method constitutes an

increase in efficiency and reduction in power in signal tnaission.
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2.25 Summary

There is an interest in the signal processing communitydodiware to efficiently perform
the Continuous Wavelet Transform for applications suchpageeh recognition, sound processing,
and data compression. The Wavelet Chip described hereloleis@acompute both the CWT and its
inverse (wavelet decomposition and reconstruction) im\ware, generating analog, discrete-time
outputs. Itis built using a mixed analog/digital architeetwhich is small and energy-efficient when
compared to possible all-digital implementations. We stiat our system computes a highly linear
analog multiplication with a sine wave of low harmonic distin by using oversampling techniques
to implement the modulation multiplication. We utilize t@entral Limit Theorem in order to
generate a Gaussian-shaped filter from a cascade of lowfiessdictions. An additional benefit
of the mixed analog/digital approach is precise controk éhre center frequencies and bandwidths
of the channels. The output of the transform is realized imgtmultiplexing the multiresolution
outputs of the filters in an efficient manner. Experimentallis on a sixteen-channel prototype
have demonstrated the effectiveness of the new archigectur

The continuous wavelet processor architecture is perhiapa giore significance by ig-
noring the “wavelet” aspect of it altogether. That is, thare uses for the architecture beyond the
decomposition and reconstruction of signals for compoesdiequency shifting, and so forth. The
architecture represents a novel method of modulation ambdelation which can be used, to give
an instance, for simple but effective lock-in amplificati@@xtremely highe) bandpass filtering).
The oversampling method of sine wave generation can be wsqatdcision function generation,
or even a form of parameterized audio synthesis. The useestampling methods in this way
to circumvent limitations of analog multiplication is a rhetl that could bear considerably more
scrutiny and has a wide range of potential applications.
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