
Chapter 4

Acoustic Transient Processing

4.1 Introduction

4.1.1 The Problem of Speech Recognition

Speech recognition is an inherently difficult problem on many different levels. For many

years, thousands of companies worldwide have put tremendous money and effort into the problem.

Undeniably, they have made many important gains, and coupled with the phenomenal advances in

speed and efficiency of computer hardware, have brought the first rudiments of practical speech

recognition from the research centers to the office and home.Unfortunately, speech recognition is

the type of problem that requires exponentially increasingresources for linear gains in accuracy. It

is generally acknowledged that human-level accuracy in speech recognition requires the resources

currently available only in the human brain—measured in therange of terabits and processed with

a high degree of parallelism and amazing efficiency. It is very likely that the reason no other animal

on Earth uses language is a specific threshold in complexity of the brain which only humans exceed.

The fact that the number of neural synapses in the brains of other mammals is also in the trillions

suggests that speech recognition comes about from a combination of factors including brain size,

structure, complexity, and the capabilities of the sensorysystems which connect the organism to its

environment.

Consequently, in regard to electronic speech recognition,perhaps the proper question to

be framed is not how well they perform in an absolute sense, but how well they are doing given

the resources they have to operate, and how robust they are under non-ideal conditions. This latter

point is not a minor one. Current research in automated speech recognition tends toward the goal

106

of increased absolute accuracy with fixed resources, which ultimately renders the systems more

fragile. Undoubtedly, what is required for better speech recognition is greater hardware resources

in size and complexity. This is almost certainly the future of computer speech recognition as the

discipline matures. It is analogous to the evolving state ofcomputer display systems: Years ago,

computer CPUs were responsible for the task of dealing with just about all tasks concerned with the

visual output. All tasks more involved than piping bits to the monitor were performed in software.

Eventually, it became clear that unless the bulk of graphic-related processing was taken away from

software and given over to high-speed, highly parallel dedicated hardware, visual displays were not

going to get much beyond the stage of text and occasional simple line drawing. Today, video card

technology is practically running away from the ability of programmers to make use of it. Video

cards have their own large stores of memory (typically 8 MB torun full-motion video in 24-bit

color on a large display) and handle tasks from MPEG compression of video to color Gouraud

shading of millions of 3-dimensional triangles per second.Speech recognition has not been an

absolute necessity for computers, and so the development ofspeech recognition hardware has not

been driven like the development of video display hardware.At some point in the future, though,

it is bound to happen. The massive parallelism required for robust speech recognition will require

dedicated hardware, something that can wander off on its ownprocessing time and resources and

return probabilities of the occurrence of various words andphrases, topical information, speaker

identification, language recognition, and the like. The microprocessor will once again be free to

work on “more important tasks.”1

4.1.2 Acoustic Transients

Let us step back a moment from the problem of speech recognition. Current software

programs for speech recognition pursue the problem in a verysoftware-specific way. That is to say,

knowing that the underlying microprocessor is a serial device with limited parallelism, what steps

are most important to make optimal use of this limited resource? The result is systems which tackle

the problem primarily in a top-down manner. On the other hand, suppose that we want to look at

the problem in a bottom-up manner, making no assumptions about the underlying hardware, but

developing the hardware to be that which best solves the problem.

Now let us take another look at biology. Long before there wasspeech recognition, there1Eventually, the dedicated peripheral hardware will eclipse the microprocessor itself, which will primarily be con-
cerned with managing the interactions between them. Such a distributed system ends up, for obvious reasons of efficiency
of design, looking structurally rather like the human brain.

107

was sound recognition, just one part of a large array of mechanisms to help an organism interpret its

environment. Most species of animal larger than insects have some form of auditory system, often

quite complex as in the case of birds and birdsong. Humans have developed the capability of speech

at most in the last few hundred thousand years, maybe much more recently. Evolutionary forces

have little capability for sweeping changes over this timespan, and indeed, the auditory systems of

our evolutionary neighbors, the primates, are little different from ours. This means that much of the

biological hardware used for speech recognition evolved for other reasons. Many of those reasons,

including speech recognition, can be bundled under the term“communication” which itself is an

extension of “perception.” If we want to know how to design speech recognition hardware from

bottom up, and if we believe that evolutionary biology can bea useful field guide for this kind of

problem, then we should start with the basic problems of perception and communication before

tackling the complexities and intricacies involved in continuous speech recognition.

Since one of the major difficulties of speech recognition is the problem of the length

and variation of sounds which represent the same perceived word or phrase, a good starting point

would be to look at the perception of acoustic events which are much shorter and have less variance

between individual instances. These events are calledacoustic transients. They comprise the bangs,

clicks, pops, thuds, clinks, snaps, and other sounds which make up an important part of the daily

perception of our environment. In addition, they include the transients from the world of biological

echolocation, sets of sound reflections encoding visual information for animals such as bats and

porpoises, and the contemporary electromechanical equivalent, sonar. Long before humans could

speak to one another, they were concerned with the snap of a twig telling of an approaching enemy

or friend, the drip of sought-after water in the desert, and the sounds of all the vocalizing animals

to tell the difference between predator and prey. These capabilities go way down the food chain,

and given evolutionary nature’s tendency to build more complex systems on top of less complex

ones rather than developing new systems from scratch, they can be considered fundamental to the

problem of speech recognition and communication.

4.2 Algorithms

There exist many kinds of pattern classification algorithms. Some of them work by finding

the correlation between a target pattern and a stored prototype pattern, called thetemplate. Corre-

lation is one of the simplest classification schemes, both conceptually and mathematically. The

correlation is a linear system effectively reducing the dimensionality of a large input space into a

108

single dimension, from which a classification is determinedby placement of a threshold value. Be-

cause the classification represents a separating hyperplane, correct classification is possible only for

linearly separable data. In addition, template correlation achieves good results as a classifier only if

the signal matches the template at the resolution of the template repeatably over many independent

instances. This practically never works at the time resolution of the raw acoustic input signal itself,

due to the complex interaction of numerous frequency components with phases which may differ

from one instance to the next. A template correlation is bestsuited to operate on the time scale at

which the energy envelope of individual frequency components of the input changes. This implies

that first the input acoustic signal must be transformed intoa time-frequency description to capture

the envelope of separate frequency bands, integrated over the required time span. This in turn im-

plies that the template will be two-dimensional, a prototypical mapping of the input class in both

time and frequency.

As a way to perform classification of continuous speech, sucha simple algorithm fails

miserably. Speech and other complex long-term signals may be stretched or compacted in time

significantly from one instance to the next (even after computing short-term energy envelopes of the

frequency bands of the input decomposition). Unless the template can be stretched or shrunk (known

asdynamic time warping) to match the input (or vice versa), there may be very little correlation

between a signal and its template [66]. Acoustic transients, which are short-term events of less than

approximately a tenth of a second, do not suffer the problem of time warping on the time scale of

the interesting information content of the signal, which isabout one or two milliseconds. A simple

correlation in the time-frequency domain followed by a search for the maximum correlation across

all templates over the time window of the input yields accurate classification results [54].

A template correlation in the time-frequency domain has thesimple general form:cz[t] = MXm=1 NXn=1x[t� n;m] pz[n;m] (4.1)

whereM is the number of frequency channels of the input (having already been processed by a

filterbank followed by rectification and smoothing, or equivalent frontend processing),N is the

maximum number of time bins in the window,x is the array of input signals from the frontend

processor,pz is the matrix of template pattern values for patternz, t is the current time, normalized

to discrete units of the sampling time. This formula produces a running correlationcz [t] of the input

array with the templatez. A signal may be interpreted as belonging to classz when the outputcz[t]
exceeds a threshold, or by evaluating some function of the vector of outputs over all classes. The

109

topics of how to perform the classification from the correlation outputs and how to determine the

optimal template for each class are discussed further in Section 4.3.6 and following.

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

Σ

Σ×

Σ×

Σ×

. . .
0

Σ

Σ×

Σ×

Σ×

. . .

0

Σ

Σ×

Σ×

Σ×
. . .

0

Σ

Σ×

Σ×

Σ×

. . .

0
. . .

. . .

. . .

x2

xM

x1

y2

y1

yM

N
or

m
al

iz
er

. . .

. . .

cz[t]

. . .

n = 1 n = 3n = 2 n = N

pz[2,2]

pz[2,M]

pz[2,1] pz[3,1]

pz[3,2]

pz[N,M]

pz[1,1]

pz[1,2]

pz[1,M]

pz[N,1]

pz[N,2]

pz[3,M]

ynorm

Figure 4.1: Template correlator, as a direct implementation of the baseline algorithm, Equa-
tion (4.1).

Figure 4.1 shows the architecture as a direct implementation of Equation (4.1). For largeM andN , this algorithm can be expensive to execute on a DSP in terms of speed and power

requirements, since it calls for a fixed-point or floating-point multiply and accumulate at every

template cell, followed by delay stages implying fixed-point or floating-point storage, and additional

accumulates. In practice, workable solutions require thatthe incoming signal be segmented such

that the correlation need be computed only at certain pointsin time. This causes the classification

to be heavily dependent on the quality of the segmentation algorithm and reduces the robustness of

the system. For reasonably-sized problems, a full correlation potentially could be done in real time

with dedicated hardware. However, there are two points I would like to make in that regard: First, in

light of the preceding discussion on biology and speech recognition, I view the problem of acoustic

transient recognition and its potential solution, template correlation, as being a fundamental building

block of bottom-up methods for attacking the problem of speech recognition. The fundamental

parts of the hardware may be required by higher-level processing hardware or software to execute

many times, and should be simple, cheap, fast, power efficient, and relatively robust. DSPs are fast

110

fr
e

q
u

e
n

cy
 (m

)

time bin (n)
x(t,M)

x(t,1)

. . .

Template

Figure 4.2: Template correlation.

and robust, but are neither simple, cheap, nor power efficient. Second, the template correlation as

presented is not necessarily the best solution to the problem of transient classification, and although

it has the soundness of common sense about it, there are numerous variations to try which may work

as well or better, but which first must be investigated in full.

Our algorithm addresses both issues. It is an approach that lends itself elegantly to low-

power parallel mixed-mode computation in the form of MOS transistor circuits operating primarily

in the subthreshold mode. It is also an approach which results from an intensive look at varia-

tions on the theme of template correlation and results from considerations balancing the competing

characteristics of speed, power, cost, and robustness. Oneconsequence of looking at a number of

variations is the development of two interesting variations of the algorithm, the alternate one which

lends itself to efficient digital computation on dedicated hardware. In Section 4.2.1, we present

the mixed-mode algorithm. In Section 4.5 and following, we present the digital algorithm, and

we include a summary of the variations on the correlation algorithm which eventually led to the

choice of each in Section 4.3.4. In the following discussion, we present our algorithm as a set

of incremental modifications to Equation (4.1), which we will refer to as the “baseline algorithm.”

Software simulations (see Section 4.3) show the baseline algorithm to be both accurate and robust.

Here we are primarily concerned with modifications which render the template correlation easier to

compute, faster, cheaper, or more power-efficient, either in general or with respect to a specific type

of hardware implementation.

We summarize the steps taken as follows:

111

1. First, we normalize the input.

2. Next, we transform the input and template into a zero-meanrepresentation by using the pair-

wise difference of channels with respect to the original.

3. We replace the template values with binary values.

4. For considerations of simplified analog hardware, we commute the differencing operation

between channels to the output.

4.2.1 Simplifying The Correlation Equation

We assume that the template correlation system receives an input vectory which is the

two-dimensional output of a filterbank system, as describedin detail in Chapter 3. Ifw is a live or

recorded acoustic signal (see Figure 3.1), the frontend filterbank processor splits it intoM band-

passed frequency bands, after which the short-term energy envelopey for each band is estimated by

rectification and smoothing.

Our first step, normalization, is essential for the steps which follow, but it is also motivated

by a need for some type of gain control to increase system robustness. Consequently, the optimal

template values must be computed using the normalized rather than the original inputs during train-

ing of the templates for each class. We normalize the system inputs by theL-1 normfunctionx[t;m] = y[t;m]� + MXk=1y[t; k] ; (4.2)

where we have simplified the presentation of the algorithm byassuming a dimensionless output

normalized relative to unity. The constant value� suppresses noise during quiet intervals in the

input. If this value is not added into the system, then duringintervals of silence at the input, all

channels will be amplified until the random noise on the inputreaches unity value. While one

may correctly assume that amplified noise is not likely to correlate with the template any better

than silence (zeros) itself, white or (in particular) babble noise does have a non-zero probability

of generating false alarm errors (see Section 4.3.7). If� is larger than the input, then the input

will remain at a low level and not be amplified significantly, as � takes most of the amplification

instead. This helps reduce the false alarm rate of the system, particularly if the noise level at the

input is well known and the signal-to-noise ratio is reasonably large. However, note that the only

consequence of a low signal-to-noise ratio is an elevated false alarm rate: The system is robust

112

and degrades gracefully rather than catastrophically withincreasing noise (see Section 4.3.7). The

effect normalization has on an example acoustic transient is shown in Figure 4.3, which is the

normalization step applied to the rectified and smoothed filterbank outputs from the example of

Figure 3.4.

Figure 4.3: Filterbank output after applying an L-1 normalization across all channels. A single
channel has been added to the system (top trace), containingthe result of a constant value less the
instantaneous sum of the remaining channel values.

While automatic gain control and reduced false alarm rates are a beneficial consequence of

normalization, themotivationbehind the particular choice of L-1 normalization is that itis essential

for significant simplification of the pattern classifier algorithm [55] as discussed below.

The hardware complexity of the correlation computation is determined by the multiply-ac-

cumulate function performed at each template value. Because digital multiplication is a particularly

complicated area and time consuming function, it should be immediately apparent that the circuit

complexity can be greatly reduced if it is possible to encodethe template values as a single bit

each. While this consideration leads to efficient digital implementations of the correlator, it is an

especially efficient form for an analog, current-mode implementation. It remains to be proved that

113

acceptable classification performance is possible with such a minimal representation of the template,

which is presented in Section 4.3.2.

To maintain the system accuracy using single-bit templatesit is necessary to have a crite-

rion by which a choice may be made as to whether a particular template bit should be+1 or�1. A

natural choice can be made if the input (on which the templateis trained) has a zero-mean represen-

tation. Unfortunately, the normalized output of the frontend filterbank processor (Figure 4.3) is a

strictly positive-valued representation. A further transformation is required to produce a zero-mean

representation, for which the most convenient method is differentiation (or differencing, in discrete

space). Numerous options are available, including differentiation in time, computing pairwise dif-

ferences between channels, computing a center-surround (sometimes referred to as a “Mexican hat”)

function, or some weighted combination of time sample and frequency channel differences. Simu-

lations have proven that the calculation of pairwise channel differences has by far the best tradeoff

in simplicity and robustness. Time differentiation is not as effective for acoustic transient classifi-

cation, but as it has an especially efficient implementationand may be useful for certain recognition

tasks, the algorithm and architecture is included in Appendix C.

We calculate the pairwise difference between channels of the input and compare it to

the corresponding difference between channels of the template. The effect of this step upon the

recognition task is negligible, as it amounts to having run the input through a spatial highpass filter,

subtracting off what amounts to a constant factor. The templates are static values, so the difference

between channels of each template replaces the original values.

Now that the (transformed) input and template values are zero-mean over time, we may

replace the template values by theirsign, indicating whether the energy in a particular channel is

expected to be larger or smaller than its neighbor. Thus, thenew formula is written:cz[t] = NXn=1 MXm=1 x0[t� n;m] p0z[n;m] (4.3)

where x0[t;m] = (x[t;m]� x[t;m� 1]) (4.4)p0z[n;m] = sign(pz[n;m]� pz[n;m� 1]): (4.5)

Through simulations, we have shown that binarization of thetemplate has a negligible effect on

classification performance [56]. Interestingly, this result does not hold for a binary input and a

continuous-valued template.

114

Σ
−

+

Σ
−

+

Σ
−

+

z−1 z−1z−1

Σ
−1

Σ
−1

Σ
−1

Σ

. . .
0

Σ
−1

Σ
−1

Σ
−1

Σ

. . .

0

Σ
−1

Σ
−1

Σ
−1

Σ

. . .

0

Σ
−1

Σ
−1

Σ
−1

Σ

. . .

0
. . .

. . .

. . .

x2

x1

y2

y1

yM

N
or

m
al

iz
er

. . .

. . .

. . .

cz[t]

. . .

n = 1n = N

p′z[N,M]

p′z[N,2]

p′z[N,1] p′z[1,1]

p′z[1,2]

p′z[1,M]

xM

p′z[N−2,M]

p′z[N−2,1]

p′z[N−2,2]

p′z[N−1,M]

p′z[N−1,2]

p′z[N−1,1]

ynorm

n = N−1 n = N−2
y0

x0

Figure 4.4: Template correlator with pipelined architecture and multiplexors replacing the
multipliers.

Figure 4.4 shows an architecture implementing Equation (4.3) directly. In addition to

minimizing die area required for storing template weights,binary template values reduce the corre-

lation multiplication to a multiplexing function. However, a multiplication by�1 is still required

in Figure 4.4. While the negation operator is not nearly as complicated as a multiplier and can be

handled efficiently by various tricks, some circuitry overhead is inevitable.

A further simplification of the architecture is also shown inthe same figure. This simpli-

fication involves transforming the correlation into a pipelined process. In the pipelined architecture,

input x[t] is multiplied by all template values simultaneously and is not used again: it does not

require any memory for the input vector. Instead, the systemstorespartial column sumsfrom the

inner loop evaluation, which we denoteq[n; t]. The partial column sums require a single shift-and-

accumulate register. The correlation output at timet is the value at the end (positionN) of the

register, delayed by one time step:q[n; t] = q[n� 1; t� 1] + MXm=1 x0[t;m] p0z[n;m] 8n 6= 1 (4.6)

115

q[1; t] = MXm=1 x0[t;m] p0z[1;m] (4.7)cz[t] = q[N; t� 1] (4.8)

A short proof that the pipelined architecture is equivalentto the original architecture can

be found in Appendix C, Section C.1. The main difference between Figure 4.1 (the original, non-

pipelined architecture) and subsequent figures (4.4, 4.6) is that the template is reversed from left to

right. In the non-pipelined architecture, the oldest inputvectorx0[t� n;m] is closest to the output,

having passed throughN delays while propagating from left to right. In the pipelined architecture,

themost recentinput vectorx0[t;m] is closest to the output, being the last state to be accumulated

on the delay-accumulate register before the output is read.

Figure 4.5: Values in the pipelined delay registers in the correlation algorithm simulation.

For all-digital ATP systems, the algorithm of Equations (4.6–4.8) represent the most effi-

cient architecture. For digital systems, the signed arithmetic for the multiplications can be handled

easily by XOR logic, so that the overhead is minimal. The four-quadrant multiplication is still

problematic for analog implementations, however.

116

The fact that the input has been normalized by the L-1 normalization function allows a fur-

ther simplification of the architecture which again does notmeasurably affect system performance.

This step is to make the template values binary[0; 1] rather than binary[�1; 1]. In the case of(0; 1)
encoding, the problematic�1 gain factor disappears and the multiplexing function may bereduced

to a simple switch. This results in a simplified floorplan for both analog and digital implementa-

tions, although the greatest gain is realized for current-mode analog systems, where each switch

can be a single MOS transistor and the accumulation can be accomplished by simple addition of

currents onto a single wire. Figure 4.6 shows this architecture.

z−1 z−1

Σ
0

Σ
0

Σ
0

Σ

. . .

0

Σ
0

Σ
0

Σ
0

Σ

. . .

0

Σ
0

Σ
0

Σ
0

Σ

. . .

0

Σ
0

Σ
0

Σ
0

Σ

. . .

0
. . .

. . .

. . .

. . .

cz[t]

. . .

n = 1n = N

p′z[N,M]

p′z[N,2]

p′z[N,1] p′z[1,1]

p′z[1,2]

p′z[1,M]

Σ
−
+

Σ
−
+

Σ
−
+

x2

x1

y2

y1

N
or

m
al

iz
er. . .

. . .

xM

z−1

p′z[N−2,M]

p′z[N−2,1]

p′z[N−2,2]

p′z[N−1,M]

p′z[N−1,2]

p′z[N−1,1]

ynorm

yM−1

n = N−1 n = N−2
x1′

x2′

xM′

y0

Figure 4.6: Template correlator with [0,1] encoding of template values.

Still, the inputx0 has both positive and negative values, so even though the correlation

has been reduced to a simple array of switches, there remainsthe problem of bidirectional currents.

We must duplicate (mirror) the input current in each template cell, and mirroring of bidirectional

currents is much more complicated than mirroring of unidirectional currents, which requires only

that a single gate voltage be distributed to the array to be transformed back into the input at each cell

by a single matched transistor. The best choice in this case is to avoid the problem by commuting

the channel differencing operation to the output. This requires that the differenced inputx0[t;m]
be expanded and multiplied through by the template separately. There are few good architectural

choices; the best one relies on the accuracy of the accumulate-delay register and assumes that two

117

registers can be built that will be reasonably well-matched. Call these two registersq1 andq2:q1[n; t] = q1[n� 1; t� 1] + MXm=1 x[t;m] p0z[n;m] 8n 6= 1 (4.9)q2[n; t] = q2[n� 1; t� 1] + MXm=1 x[t;m� 1] p0z[n;m] 8n 6= 1 (4.10)q1[1; t] = MXm=1 x[t;m] p0z[1;m] (4.11)q2[1; t] = MXm=1 x[t;m� 1] p0z[1;m] (4.12)

Thus, the correlation output becomes:cz[t] = q1[N; t� 1]� q2[N; t� 1] (4.13)

Note that in this case the inputx[t;m] which comes straight from the frontend filterbank

processing and hasnotbeen transformed by a differencing operation, is multiplied directly with the

template valuep0z[n;m], which been transformed.

One distinct advantage of commuting the difference operation is that only one difference

needs to be evaluated rather thanM separate differences, one for each channel, and so while we

must be concerned with how well matched the two delay-accumulate registers are, and how well

matched the input mirroring transistors are, we do not have to worry about matching and accuracy

of the channel difference calculation across all the channels. Most importantly, since the inputsx are rectified and therefore strictly positive, the productxp0, wherep0 is binary [0; 1], is always

nonnegative and equals eitherx or zero. The implied multiplication is in the positive quadrant only,

which allows us to conveniently implement the entire correlation as an array of single-transistor

current sources and single-transistor current switches. The overhead required by splitting the corre-

lation into two parts for the delay-accumulate registersq1 andq2 is not as large as one might expect

(see Section 4.4.1 and following). The resulting high density layout of templates enables an entire

acoustic pattern recognition system to be placed on a singlechip in conventional CMOS technology.

A typical application consisting of an analog current-modeacoustic frontend processor and 1024-bit

templates (M = 16,N = 64) to classify a dozen different transient sounds can fit ina 4 mm� 6 mm

die area in a 1.2µm technology.

Our choice of an analog implementation stems from the ability to make such a system

compact and extremely power-efficient. With a separate correlator circuit for each template, the

118

system is fully parallel, and only about as complex as a RAM array. Figure 4.7 shows a diagram

of the system as presented, for a current-mode implementation. The correlator accepts inputs in

the form of unidirectional currents, one for each channelm. The input current is mirrored simul-

taneously in all cells across the template array, shown hereby voltage controlled current sources.

Each template cell contains a single bit controlling the multiplexer, a dual-pole, single-throw switch

which adds either zero current or the copy of the input current to the sum. Rather than compute the

channel difference directly, the positive and negative parts are kept separate. Inputs from frequency

channelsn and(n+ 1) are kept separate, each added to its own partial column sum line and accu-

mulated over time on two different delay-accumulate lines.The channel difference computation is

deferred, occurring at the output.

128

Template p′z

L-
1

no
rm

al
iz

at
io

n

Delay line 1

Delay line 2

input y(0,t)

Σ
+

−
output cz(t)

x(m,t)p′z(n,m)Σ

Σ

m

m

. .
 .

. .
 .

. .
 .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1

Vdd

Vdd

p′(n,m)

q1(n,t) =

q2(n,t) = x(m,t)p′z(n,m−1)

x(0,t)

input y(32,t)
x(32,t)

Figure 4.7: Block diagram of the temporal current correlator.

4.3 Simulations

In the previous sections of this chapter, we introduced an algorithm for classifying acous-

tic transient signals using template correlation, and showed the development of the algorithm for

efficient and accurate operation under the constraints of the proposed analog VLSI hardware. In

the course of both algorithm and hardware development, we were led to reevaluate the algorithm in

119

the light of the possibilities and the limitations of the chosen hardware. This and the following sec-

tions specifically addresses improvements in classification performance achievable by algorithmic

modifications, tailored to the constraints and strengths ofthe implementation medium.

4.3.1 The Hopkins Electronic Ear (HEEAR) Processor

To train and evaluate the classification system, we acquireda database of approximately

twenty recorded samples of each of ten different classes of “everyday” transients using materials

obtained from a typical office/laboratory environment at the time the recordings were made [54].

The ten classes are listed in Table 4.1.

0 0.2 0.4 0.6 0.8 1 1.2
−100

−50

0

50

100

time (s)

am
pl

itu
de

Dink Clap Tub Can

Figure 4.8: Example transient recorded data.

The complete recording of the transients was played back into a data acquisition system,

sampled at 32 kHz, and saved to disk. Then the sampled stream was processed through a system

based around the analog VLSIHEEARchip [53]. The HEEAR processor is an electronic cochlear

model, a modification and extension of the original design presented inAnalog VLSI and Neural

Systems[1]. The HEEAR chip is like the original electronic cochlea in that it models the mechanics

of the mammalian basilar membrane using a long cascade of lowpass filters, with outputs tapped

along the length of the cascade. It differs in that it makes use of first-order lowpass filters along the

120

Bar A heavy metal bar
Book Sound of a book being closed, loudly
Can An empty aluminum can hit against a desk
Dink A lightweight metal bar
Door Sound of a door closing, with the latch snapping into place
Finger Finger snap
Hand Handclap
Tub A plastic tub
Mallet A wooden mallet
Shelf Sound of knocking on a wooden bookshelf

Table 4.1: Classes and descriptions of the recorded transient dataset.

cascade rather than second-order filters with gain. Becausethe taps then do not have bandpass-like

characteristics, each tap is followed by a bandpass filter.

The cascade of filters begins with a high-frequency cutoff and each successive stage has

a progressively lower cutoff frequency. Consequently, thestopband attenuations get multiplied and

after a few stages in the cascade, the filter transfer function acquires an extremely large slope for

the rolloff into the stopband. The use of first-order filters rather than resonant filters increases

the stability of the signal as it passes along the cascade, and helps control mismatch between the

stages. The bandpass-filtered output of the taps comprise a thirty-one channel filterbank with center

frequencies spaced on a logarithmic frequency scale from 100 Hz to 6 kHz. The filter is more or

less constant-Q with Q = 3:5 at the higher frequencies but drops to unity resonance at thelowest

frequencies, in keeping with the physical model of the mammalian cochlear frequency response.

The HEEAR chip extends the original electronic cochlea by modeling the function of

the inner hair cells surrounding the mammalian cochlea. Thepurpose of the hair cells is signal

rectification and some nonlinear gain control. These hair cell circuits were bypassed for the acoustic

transient recordings. The HEEAR response to the recorded dataset was sampled and saved to disk

along with the original recording.

4.3.2 Simulating the Acoustic Transient Baseline Algorithm

The acoustic transient processor algorithm begins with digital post-processing of the

HEEAR frontend filterbank data on a computer. The samples from the thirty-one output chan-

nels of the HEEAR processor are rectified, smoothed with a lowpass filter function using a 1 ms

time constant, and then decimated from 32 kHz to 1 kHz. The smoothed, decimated outputs are

121

0 0.2 0.4 0.6 0.8 1 1.2
1

6

11

16

21

26

31

time (s)

fr
eq

. c
ha

nn
el

 +
 n

or
m

Dink Clap Tub Can

Figure 4.9: Example HEEAR-processed transients.

normalized with the L-1 norm function (Equation (4.2)).

The value� itself can be normalized and used as another output channel:x[t;M + 1] = �� + MXk=1y[t; k] ; (4.14)

For typical values of�, the additional outputx[t;M+1] inversely follows the energy envelope of the

input signal, which is the sum of the individual channel outputs. It becomes maximum during the

periods of silence and minimum during presentation of a transient event. This extra output can be

used to detect onsets of transients, but is not used in the correlation computation of Equation (4.9–

4.12).

The next stage of processing involved automatic segmentingof the recordings into indi-

vidual transient examples. The automatic segmenting algorithm finds transient boundaries using

the normalized channelx[t;M + 1]. Quantizing this signal with a hard-limiting threshold function

produces a noisy estimate of the segment, which is then smoothed and thresholded again to produce

a clean segmentation signal lasting the duration of the transient. The smoothing and thresholding

step is performed twice in parallel, once with a smoothing time constant of 10 ms and once with a

122

smoothing time constant of 1 ms, and the final results combined with an OR logic function. The

longer time constant ensures that all noise is eliminated from the segment estimate, while the shorter

time constant acts to detect the transient onset with less delay [55].

Template valuespz are learned automatically by aligning all examples of the same class

in the training set using the result of the automatic segmenter, and averaging the values together.

The template size is set to be the same size as the maximum-length segmented example, and the

remaining examples are padded out to match.

Can

Dink Clap

Tub

Figure 4.10: Example templates learned by the ATP algorithm.

We evaluated the accuracy of the system with a leave-one-outcross-validation loop in

which we train the system on all of the database except one example of one class, then test on that

remaining example, repeating the test for each of the 222 examples in the database. The baseline

algorithm gives a classification accuracy of 96.4%. Table 4.2 shows the resulting confusion matrix

for the cross-validation loop.

4.3.3 Optimizing Template Correlation Algorithms for Acoustic Transient Classifi-

cation

A major consideration for hardware implementations (both digital and analog) is the mem-

ory storage required by the templates, one of which is required for each class. Minimal storage space

in terms of bits per template is practical only if the algorithm can be proved to perform acceptably

well under decreased levels of quantization of the templatevalues.

At one bit per template location (i.e., M � N bits per template), the complexity of the

hardware is greatly simplified, but it is no longer obvious what method is best to use for learning

123

Event Bar Book Can Dink Door Finger Hand Mallet Shelf Tub
Bar 28 0 0 0 0 0 0 0 0 0

Book 0 19 0 0 0 0 0 0 0 1
Can 0 0 27 0 2 0 0 0 0 0
Dink 1 0 0 25 0 0 1 1 0 0
Door 0 0 0 0 9 0 0 1 0 0

Finger 0 0 0 0 0 17 1 0 0 0
Hand 0 0 0 0 0 0 21 0 0 0
Mallet 0 0 0 0 0 0 0 12 0 0
Shelf 0 0 0 0 0 0 0 0 28 0
Tub 1 0 0 0 0 0 0 0 0 28

Table 4.2: Confusion matrix for leave-one-out cross-validation loop, using the baseline algorithm.

fr
e

q
u

e
n

cy
 (m

)

time bin (n)

Figure 4.11: Example of a real-valued template.

fr
e

q
u

e
n

cy
 (m

)

time (t) or time bin (n)

Figure 4.12: The same template reduced to trinary values.

124

time (t) or time bin (n)

fr
e

q
u

e
n

cy
 (m

)

Figure 4.13: The same template reduced to binary values.

the template values, or for calculating the per-class gains. The choice of the method is guided by

knowledge about the acoustic transients themselves, and simulation to evaluate its effect on the

accuracy of a typical classification task.

4.3.4 Simulations of different zero-mean representations

One bit per template value is a desirable goal, but realizingthis goal requires reevaluating

the original correlation equation. The input values to be correlated represent band-limited energy

spectra, and range from zero to some maximum determined by the L-1 normalization. To determine

the value of a template bit, the averaged value over all examples of the class in the training set

must be compared to a threshold (which itself must be determined), or else the input itself must

be transformed into a form with zero average mean value. In the latter method, the template value

is determined by the sign of the transformed input, averagedover all examples of the class in the

training set.

The obvious transformations of the input which provide a vector of zero-mean signals to

the correlator are the time derivative of each input channel, and the difference between neighbor-

ing channels. Certain variations of these are possible, such as a center-surround computation of

channel differences, and zero-mean combinations of time and channel differences. While there is

evidence that center-surround mechanisms are common to neurobiological signal processing of var-

ious sensory modalities in the brain, including processingin the mammalian auditory cortex [70],

time derivatives of the input are also plausible in light of the short time base of acoustic transient

events. Indeed, there is no reason to assumea priori that channel differences are even meaningful

125

on the time scale of transients.

Table 4.3: Simulation results with different architectures.

Method Both Binary Both Binary (1;�1) Binary (1; 0)
Cont. Input Binary Template Template

One-to-One 96.40% — — — —
Time Difference 85.59% 65.32% 59.46% 82.43% 81.98%

Channel Difference 90.54% 53.60% 95.05% 94.59% 94.14%
Center-Surround 92.79% 53.60% 95.05% 92.34% 92.34%

Table 4.3 shows simulation results, where classification accuracy on the cross-validation

test is given for different combinations of continuous-valued and binary inputs and templates, and

different zero-mean transformations of the input. There are several significant points to the results of

these classification tasks. The first is to note that in spite of the fact that acoustic transient events are

short-term and the time steps between the bins in the template as low as 2 ms, using time differences

between samples does not yield reliable classification wheneither the input or the template or both

is reduced to binary form. However, reliability remains high when the correlation is performed

using channel differences. The implication is that even theshortest transient events have stable and

reliable structure in the frequency domain, a somewhat surprising conclusion given the impulsive

nature of most transients.

Event Bar Book Can Dink Door Finger Hand Mallet Shelf Tub

Bar 27 0 0 0 1 0 0 0 0 0
Book 0 19 0 0 0 0 0 0 0 1
Can 1 0 22 0 4 0 0 0 1 0
Dink 1 0 0 26 0 0 1 0 0 0
Door 0 0 0 0 10 0 0 0 0 0

Finger 0 0 0 0 0 18 0 0 0 0
Hand 0 0 0 0 0 3 18 0 0 0
Mallet 0 0 0 0 0 0 2 10 0 0
Shelf 0 0 0 0 1 0 0 0 27 0
Tub 0 0 0 0 0 0 0 0 0 28

Table 4.4: Confusion matrix for leave-one-out cross-validation loop, using binary(1; 0) templates
and channel differencing.

Another interesting point is that we observe no significant difference between the use

of pairwise channel differences and the more complicated center-surround mechanism (twice the

channel value minus the value of the two neighboring channels). The slight decrease in accuracy

126

for the center-surround in some instances is most likely dueonly to the fact that one less channel

contributes information to the correlator than in the pairwise channel difference computation. When

accuracy is constant, a hardware implementation will always prefer the simpler mechanism.

Very little difference in accuracy is seen between the use ofa binary(1;�1) representation

and a binary(1; 0) representation, in spite of the fact that all zero-valued template positions do not

contribute to the correlation output. This lack of difference is a result of the choice of the L-1

normalization across the input vector, which ensures that the part of the correlation due to positive

template values is roughly the same magnitude as that due to negative template values, leading to

a redundant representation which can be removed without affecting classification results. In analog

hardware, particularly current-mode circuits, the(1; 0) template representation is much simpler to

implement.

Time differencing of the input can be efficiently realized inanalog hardware by commut-

ing the time-difference calculation to the end of the correlation computation and implementing it

with a simple switched capacitor circuit. Taking differences between input channel values, on the

other hand, is no so easily reduced to a simple hardware form.To find a reasonable solution, we

simulated a number of different combinations of channel differencing and binarization. Table 4.5

shows a few examples. The first row is our standard implementation of channel differences using bi-

nary(1; 0) templates and continuous-valued input. The drawback of this method in analog hardware

is the matching between negative and positive parts of the correlation sum. We found two ways to

avoid this problem without greatly compromising the systemperformance: The first, shown in the

second row of Table 4.5 is to add to the correlation sum only ifthe channel difference is positive and

the template value is 1 (one-quadrant multiplication). Another (shown in the last row) is to add the

maximum of each pair of channels if the template value is 1, which is preferable in that it uses the

input values directly and does not require computing a difference at all. Unfortunately, it also adds

a large component to the output which is related only to the total energy of the input and therefore

is common to all class outputs, reducing the dynamic range ofthe system.

Table 4.5: Simulation results for different methods of computing channel differences

method accuracy
channel difference 94.14%

one-quadrant multiply 92.34%
maximum channel 93.69%

127

4.3.5 High-Level Simulations of ATP Mixed-Mode VLSI Hardware

We independently confirmed the results of the software trials using a separate system more

accurately representing the hardware being developed for the ATP project. Primarily, this involved

a full high-level simulation of the log-domain parallel bandpass filterbank to confirm that results of

the classification algorithm were independent of the specific features of the frontend system used; in

other words, that the performance was not specifically linked to the behavior of the HEEAR chip in

some way that would render the algorithm less accurate on theproposed parallel bandpass filterbank

system.

To train and evaluate the system, we used the same database ofrecorded samples of 10

different classes of “everyday” transients described in the preceding section. We simulated the

frontend filterbank described in Chapter 3, a sixteen channel filterbank having aQ of 5.0 and with

center frequencies spaced on a mel scale from 100 Hz to 4500 Hz. The bandpass filtering was

followed by rectification and smoothing with a lowpass filterfunction with a cutoff frequency scaled

logarithmically across channels, from 60 Hz to 600 Hz. The channel output data were decimated to

a 500 Hz rate (2 ms period). Half of the database was used to train the system, and half used to test.

In general, performance on classification tasks was similarto that of the system using

HEEAR chip outputs, in spite of the fact that the time period of samples was doubled, the num-

ber of channels cut in half, and the number of training examples also cut in half. Slight gains in

performance on certain tasks are most likely due to the cleaner digital filtering of the recorded data.

4.3.6 Optimization of the classifier using per-class gains

The baseline algorithm simulation reported in Appendix E returns a correlation value

equal to the dot product divided by the number of time samplesin the template. Thus:cz[t] = Kz MXm=1 NzXn=1x[t� n;m] pz[n;m] (4.15)Kz = 1Nz (4.16)

This slight difference in the correlation equation was not included in Equation (4.1) due to the fact

that the VLSI hardware has a fixed number of time samples per templateN , so there is no point

in dividing each result by a constant value. The point of the normalization, however, is obvious

for the baseline algorithm, considering that some acoustictransient classes have inherently more

energy than others. If the outputs for each template are compared solely on their correlation values,

128

certain classes will have a tendency to win unconditionally. Since in general, classes which have

longer timespans contain more overall energy, dividing thecorrelation result by the timespan of

the template is a sensible way to normalize. However, it remains an ad hoc solution. The proper

treatment is presented below. It is fundamental to the optimizations described in Section 4.2.1.

The template has been generated by averaging all examples ofthe class in the training

set. Therefore the template can be considered to represent theprototypicalclass example. The cor-

relation of the template with itself (autocorrelation) therefore represents a prototypical correlation

for that class with its own template, under condition of optimal alignment, for which we expect the

correlation result to be maximum. If all correlation results for templatez are normalized by the

autocorrelation of templatez, then all correlations should have an average maximum valueof one,

and correlation outputs from different templates may be compared directly to one another.

The gain factorKz is computed from the template values using the autocorrelation func-

tion: Kz =vuut MXm=1 NzXn=1 p0z[n;m]2: (4.17)

The per-class gain valuesKz using the autocorrelation normalization are optimal for the

baseline algorithm. Autocorrelation applied tobinary templates (when the template value is as-

sumed to be either+1 or �1) yieldsKz = M Nz, which is the same value for all classesz when

the template is a fixed size (Nz = N 8z). This indicates that autocorrelation tells us nothing in-

teresting about per-class gains other than that the optimalcase is that of no normalization. Unity

gain is assumed in all the simulations of the previous section, and the assumption is upheld by the

excellent system accuracy in simulation where no gainsKz were applied at the outputs.

A careful evaluation of errors from several runs indicated the possibility that different

gains on each channel potentially could improve recognition rates. That is, if errors are histogrammed

by type (classa expected, incorrectly classified as classb, for all combinations ofa 6= b), a nonuni-

form distribution results. Simple experiments withKz gain values tweaked by hand proved that

reducing the gain of classes which had a greater tendency to be chosen in error could cause error

rates to drop and the error distribution to be more uniform.

The apparent contradiction can be resolved by realizing that the autocorrelation of the

binary template with itself only makes sense if the input is also binary. When inputs are continuous-

valued, then the correct computation is not the template autocorrelation, but the correlation of the

template against the averaged examples of the class, which are the values obtained for the template

129

just prior to quantizing. Thus:Kz = vuut MXm=1 NzXn=1 p00z[n;m] p0z[n;m] (4.18)p00z[n;m] = pz[n;m]� pz[n;m� 1] (4.19)p0z[n;m] = sign(p00z[n;m]) (4.20)

wherepz[n;m] are the same template values used for the template in the baseline algorithm Equa-

tion (4.1). This formula results in differentKz values when the inputs are continuous-valued and

the templates are binary-valued.

There is yet another consideration to be made in determiningvaluesKz. An alternate

strategy is based on the realization that while normalization of all template autocorrelations is im-

portant, there is also valuable information to be gained from thecross-correlationsbetween class

templates or between class templates and class example averages, as used in Equation (4.20). The

cross-correlation of class averagep00i with templatep0j yields the expected average output value

when an input example of classi is correlated against the template for classj. Clearly, what we

want is to maximize the expressionKi MXm=1 NXn=1 p00i[n;m] p0i[n;m] (4.21)

while at the same time minimizing the expressionsKj MXm=1 NXn=1 p00i[n;m] p0j[n;m] 8j 6= i: (4.22)

We do this by inventing an error expression by which we can evaluate the state of the

condition above, and then maximizing or minimizing the expression with respect toKi andKj.
Note that for all of the following equations, we will use the valueN to denote the width of the

template. This assumes either that all templates have the same widthN or that the shorter of the

two expressions is padded to match the other.

We start with aZ�Z matrix of cross-correlations, denotedC, whereZ is the total number

of classes: Cij = Kj MXm=1 NXn=1 p00i[n;m] p0j [n;m] i = 1 : : : Z; j = 1 : : : Z (4.23)

Matrix elementCij is the expected value for the correlation between a typical example of a transient

input i and the template for its own classj. Therefore we wish to maximize each diagonal element

130

Cii with respect to all other elements in the same column,Cij. Since the templates are fixed by the

averaging algorithm we used to create them, the only degree of freedom available for minimizing or

maximizing anything is the premultiplication coefficientsKj on each template, one per row ofC.

The per-class gain mechanism is easily transferred to the analog or digital hardware domain.

In the case of both continuous-valued templates and input, an optimal solution can be

directly evaluated and yields the autocorrelation normalization of Equation (4.17). However, for all

binary forms of the template and/or input, direct evaluation is impossible and the solution must be

found by choosing an error functionE to minimize or maximize. The error function must assign

a large error to any off-diagonal element in a column that approaches or exceeds the diagonal ele-

ment in that column, but must not force the cross-correlations to arbitrarily low negative values. A

minimizing function that fits this description isE =Xj Xi 6=j exp (KiCij �KjCjj): (4.24)

This function unfortunately has no closed-form solution for the coefficientsKj, which must be

determined numerically using Newton-Raphson or some otheriterative method. A software routine

which performs the optimization is printed in Appendix F.

Improvements in the recognition rates of the classificationtask using this optimization

of per-class gains is shown in Table 4.6, where we have considered only the case of inputs and

templates encoding channel differences. Although the database is small, the gains of 2 to 4% for the

quantized cases are significant, particularly as they render the histogram of errors more uniform.

Table 4.6: System accuracy with and without per-class normalization.

binarization accuracy, optimized accuracy, non-optimized
none 100% 100%
template only 93% 91%
template & input 95% 91%

4.3.7 System Robustness

We performed several additional experiments in addition tothose covered in the previous

sections. One of these was an evaluation of recognition accuracy as a function of the template

lengthN (number of time bins), to determine what is a proper size for the templates. The result is

shown in Figure 4.14. This curve reaches a reliable maximum at about 50 time bins, from which

our chosen size for the hardware implementation of 64 bins provides a safe margin of error (as

131

well as a convenient power of 2 for addressing the memory). However, it is interesting to note that

recognition accuracy does not drop to that of random chance until only two time bins are used (a

total of 64 bits per template), and accuracy is nearly 50% with only 3 time bins (a total of 96 bits

per template).

0 20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

Correlator length N

S
ys

te
m

 A
cc

ur
ac

y
(%

)

Figure 4.14: Effect of decreasing the number of time-bins.

Examining the effect of a different number of frequency channels is a difficult process due

to the requirement of regenerating the input data for each set, since the filter placement and band-

width must change when the number of filter channels changes.However, we did make one critical

measurement which was to note the difference between operation at 32 channels (the original simu-

lations)vs.16 channels (the size of the VLSI hardware) with all other parameters of the recognition

task fixed. The recognition task which maintained an accuracy of 94.1% under 32 channels dropped

only slightly to 91.9% when using only 16 channels. In both input sets, theQ of the filters was

adjusted to maintain similar overlap between adjacent filters, and the frequency span covered by all

filters in the filterbank was approximately the same.

We made one evaluation of the robustness of the algorithm in the presence of noise by

introducing additional white noise at the correlator inputs. The graph of Figure 4.15 shows that ac-

curacy remains high until the signal-to-noise ratio is roughly 0 dB, after which it degrades gracefully

132

rather than catastrophically with additional noise.

−30 −20 −10 0 10 20 30
0

20

40

60

80

100

SNR (dB)

S
ys

te
m

 A
cc

ur
ac

y
(%

)

Figure 4.15: Effect of white noise added to the correlator inputs.

An interesting question to ask about the L-1 normalization at the frontend is how the

normalization value (�) affects the classification performance. If this channel isomitted, then the

total instantaneous value of all outputs must equal the samevalue, even during periods of silence,

in which low-level noise gets amplified. The nominal value ofthis channel was chosen to match the

levels of noise in the transient recordings. For one of the cases of Table 4.3 (real input, binary(1; 0)
template, channel differencing at the input), we tried two other tests, one with the normalization

constant doubled, and one with it omitted (zero). Doubling the normalization constant had no effect

on the error rate, while omitting it caused the accuracy to drop only from 94.1% to 92.3%. The

conclusion is that for large templates, random noise has a low probability of producing a spurious

positive correlation that would be classified as a transient. The classification algorithm is not largely

dependent on input signal normalization.

4.3.8 Research Directions

The optimizations of the correlation algorithm we have presented are by no means exhaus-

tive; in fact, they represent only the tip of the iceberg. Allthe optimization strategies considered here

133

have been based upon the assumption that the template valuesarrived at by aligning and averaging

all class examples is immutable. By considering template values fixed, normalization becomes a

relatively simple problem. We have one degree of freedom andwe can be certain that we have

found an optimal solution under these constraints.

The acquisition of templates by aligning and averaging all examples of a class is a rea-

sonable and simple method based on the fact that a function’sautocorrelation peaks at the position

of exact alignment. However, it does not guarantee that the resulting template values are in any

way “optimal” over all time and against all competing class inputs. It does not consider correlation

peaks which might occur away from the position of alignment of the templates, and it does not

take into account any information about competing classes.Releasing the constraint of fixed tem-

plates expands the optimization problem into so many dimensions that finding a solution becomes

a formidable task. Some strategies toward this goal are discussed in Chapter 5.

4.3.9 Remarks

Starting from a template correlation architecture for acoustic transient classification tar-

geted for high-density, low-power analog VLSI implementation, we have investigated several vari-

ants on the correlation algorithms, accounting for the strengths and constraints of the VLSI imple-

mentation medium while maintaining acceptable classification performance.

Reduction of input and templates to binary form does not significantly affect performance,

as long as they are transformed to encode the difference in neighboring channels of the original

filterbank frontend outputs. This suggests that acoustic transient classification is not only amenable

to implementation in simple analog hardware, but also in reasonably simple digital hardware.

In looking for zero-mean representations of the input compatible with a binary template,

we found that computing pairwise differences between channels gives a more robust representation

than a time-differential form, as was reported previously in [55]. We have found that computing

a center-surround function of the inputs yields virtually the same results as taking pairwise chan-

nel differences. Where hardware implementation is the goal, the pairwise difference function is

preferred due to its greater simplicity.

We have additionally shown that cross-correlations between aligned, averaged inputs and

templates can be used with an iterative method to solve for optimal gain coefficients per class output,

which yield better classification performance. This is a method which can be applied in general to

all template correlation systems.

134

4.4 Hardware Implementation of the Acoustic Transient Processor

We now turn to the problem of creating the VLSI circuits whichimplement the algorithms

presented in the preceding sections. Much of the algorithm development took into consideration the

problem of efficient mixed-mode VLSI design.

Our approach lends itself elegantly to low-power, massively parallel analog computation

in the form of MOS transistor circuits operating primarily in the subthreshold mode. Our choice

of an analog implementation stems from the ability to make such a system compact and extremely

power-efficient. Using a separate correlator circuit for each template, the system is fully parallel,

and only about as complex as a RAM array.

4.4.1 Current-switching Memory Array

To implement the summation overm in Equations (4.9–4.12), we utilize the simplest form

of summation available to analog circuits, that of summing currents onto a single wire. Each cell

in the array contains a conventional static memory circuit storing the single-bit template value, a

pMOS transistor switch with the template bit controlling its gate, and a pMOS transistor current

source which generates a copy of the input current for rowm. The switch allows or disallows

the copied current to be added to the total current for columnn. Each array position is individually

addressable for programming (so-called “random access”) to allow simple chip-in-the-loop learning

under computer control. Unlike a true RAM array, there is no need (other than diagnostic) to be

able to read the value of the memory cell. In a way, these cellsare “write-only,” although the value

of each cell can be determined indirectly through the systeminput and output.

Figure 4.16 shows the layout of the template array and the circuit used at each template

cell. The single-bit template value is stored in a standard 6-transistor SRAM cell, made of back-

to-back inverters and two nMOS programming transistors connected to a row-programming enable

lineWrite(m) running horizontally across the template array and two lines for the inputbit(n) andbit(n) values. The programming transistors and corresponding data and control lines appear gray

in the figure. The remainder of the core cell represents the bulk of the correlator processing, which

has been somewhat complicated by the requirements of the channel differencing operation. The

algorithm requires two switches per template memory location t(n;m), one (M2) which switches

the input current of rowm to the first (positive) delay line, and one (M3) which switches the input

current of rowm� 1 to the second (negative) delay line. The positive and negative parts share the

same wire carrying the current down to the delay lines by time-multiplexing based on the signal�.

135

Two additional switches (M4 andM5) determine the phase at the memory cell. On the delay lines,

the same signal� determines which delay line performs the accumulation (Figure 4.20).

Through the various optimizations to the algorithm described in Section 4.2.1, we have

reduced the array core cell to five transistors. It could be made with as few as three transistors

by having two metal lines carrying the positive and negativeparts of the column sum currents to

the two delay lines at the bottom of the array rather than sharing the one column line as shown

in the figure. However, for the two-metal layer, two-poly layer process we used to fabricate the

circuit, the five-transistor cell is actually more compact than the three-transistor cell due to the

design rule constraints on the separation of metal lines, and the fact that the four transistors used

as switches (M2 throughM5) can be minimum-size devices.2 By contrast, the input current mirror

transistorM1 shouldnotbe minimum size, as transistor area is inversely related to device mismatch.

Transistor and core cell sizes are reported in Table 4.7. Dimensions are shown in lambda (�) where

the fabrication process parameter� = 0.6µm.

Template p′z

L-
1

no
rm

al
iz

at
io

n

Σ
+

−
output cz(t)

. .
 .

. .
 .

. .
 .

. . .

. . .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

1

Vdd

enable Φ

Φ Φ

M3
M2

M1

M4
M5

N

enable Φ

Write(m)

bit (n)bit (n)

Vin (m,t)

input y(M,t)

input y(0,t)
x(0,t)

x(M,t)

Delay line 1

Delay line 2

x(m,t)p′z(n,m)Σ

Σ

m

m

q1(n,t) =

q2(n,t) = x(m,t)p′z(n,m−1)

p′(n,m−1)

p′(n,m)

x(m,t) =

Figure 4.16: Block diagram of the temporal current correlator.

The current-mode correlator cell is an ideal circuit architecture for a dynamic, rather than

static, memory. Figure 4.17 shows how a dynamic memory cell can be constructed (although it

does not show the sensing circuit, one per column, used to determine the value of the memory

during refresh and set thebit(n) line accordingly). The switches in the core cell (M2 throughM5)2This is consistent with the usual rule of thumb about the expected fraction of a digital circuit which will be occupied
by routing (metal) layersvs. the space occupied by the gates (transistors) themselves.

136

M1 W=L (�) = 16/8M2. . .M5 W=L (�) = 4/2
core cell W=L (�) = 28/86
16�64 array W=L (�) = 1796/1380

Table 4.7: Transistor, cell, and array sizes correspondingto Figure 4.16.

are positioned like cascode transistors in relation to the current source (M1), and will act as such

over a large range of voltages. The implications are:

1. The dynamic circuit should ensure that the dynamic memorycapacitor node (t(n;m)) tends

to move toward the positive power supply (Vdd in response to charge leakage. If this is true,

then cells which are programmedoff will remain off.

2. A cell which is programmedon will tend to leak slowly toward theoff state. However, the

switch will be effectivelyon, passing all input current, for a large range of voltages (for a 5 V

supply, one can expect about four volts range, above which the input current will be reduced).

Consequently, the dynamic memory does not need to be refreshed often, reducing overall

power consumption.

3. Another consequence of the large range of voltages for which the switch ison is that the

memory does not need to be programmed down to zero volts. As a result, the core cell does

not need any nMOS transistors at all: Thebit(n) value to store can be programmed through a

single pMOS transistor (M6). Due to the limitations of unipolar devices used as switches, the

range of voltage values which can be stored on the capacitor is limited to the positive power

supply down to somewhere in the range of 1 to 2 V above ground. This value suffices to keep

the switch open.

4. Because the correlator array operates on a slow 1 to 2 ms clock, there is plenty of time for

refreshing between cycles of the correlator, so that the digital switching which occurs during

dynamic memory refresh does not have any effect on the analogprocessing. AllN columns

in a single channel (row)m are refreshed together. On each correlation cycle, one of the rows

is refreshed, so that the entire memory is refreshed everyM cycles (M = 16 on our prototype

chips).

We have used both standard static (back-to-back inverters)memory and the dynamic cell

described above in prototype designs. As is generally the case with VLSI memory arrays, the

137

Vdd

Φ Φ

Vdd

Write(m)

M3M2

M1

M4 M5

M6
C1

t (n,m)

t (n,m−1)

q1(n,t) on Φ =1
q2(n,t) on Φ =1

Vin (m)

bit (n)

Figure 4.17: Efficient dynamic memory cell for the correlator array.

dynamic version consumes more power due to the constant leakage and refreshing, but takes con-

siderably less layout area than its static counterpart, dueto the fewer transistors required but also

due to the fact that the cell can be made with a single type of transistor (pMOS, in the figure) which

allows a much more compact core cell.

4.4.2 Bucket Brigade Device

Pipelined, sampled-time analog delay lines have a number ofdifferent possible imple-

mentations, many of them rather complicated. The task of thedelay line in the acoustic transient

processor requires both a pipelined delay and an addition (Figure 4.6). We implement the delay-

accumulate register using abucket brigade device(BBD) [60]. This device is similar to a CCD line,

but is more appropriate for this application, in which the system is clocked at a rate of 1 or 2 ms:

while the charge-transfer efficiency in a bucket brigade is less than that of a CCD [61], the CCD

is adversely affected by dark currents in the quiescent state and cannot operate at slow (auditory)

rates. Large poly1-poly2 capacitors, which are significantly less affected by leakage currents than

CCD capacitors, store the charge at each bucket brigade node.

Figure 4.18 shows the bucket brigade line. It is driven by a nonoverlapping two-phase

138

Vdd

φ2φ1 φ2φ1 φ1

Vout

φ1

2 ms

φ3

φ2φ1

Vgg

φ2

φ2

I(n = N)

Clock timing

. . .

. . .

I(n = 1) I(n = 2) I(n = 3)Vdd

φ3

Vdd Vdd Vdd

VC

Figure 4.18: Details of the bucket brigade device (BBD).

clock. Each BBD transistor’s gate is coupled to its drain through a capacitor (preferably several

hundred fF or greater). At the start of a cycle, the analog value to be transferred (a voltage measured

negatively fromVdd) is stored on the transistor source, and a value ofVdd � Vth is stored on the

transistor drain, whereVth is the transistor threshold voltage. The clock raises the gate-to-source

voltageVgs of the transistor while ensuring a positive drain-to-source voltageVds , initiating current

flow from drain to source. Provided that the capacitors at drain and source of the transistor are

the same size, the voltage drop at the drain will equal the voltage rise at the source. Current flow

becomes negligible whenVgs = Vth . The final voltage at the source is thereforeVdd � Vth , and

the final voltage at the drain, when the clock voltage returnsto ground, is the value originally at the

source.

Although the explanation above describes the theoretical operation of the bucket brigade

device, in practice such a system suffers from significant losses due tocharge transfer inefficiency,

primarily because on any given cycle, some of the charge remains trapped under the transistor gate

and is injected back into the previous stage at the end of the cycle. An additional transistor per

BBD stage, gated by a constant voltageVgg , alleviates the problem and can increase charge transfer

efficiency from 97% to 99.7% The voltageVgg has an optimal value which can be determined

139

experimentally but which is typically a few tenths of a volt below the positive power supplyVdd [62].

The bucket brigade device may be put into service as an accumulator quite conveniently.

Most bucket brigade circuits in the literature are used as analog delay lines with the sampled volt-

age applied to one end of the BBD and the output detectedn stages later. Our use of the bucket

brigade as a pipelined accumulator is apparently a novel application of the device. Our bucket

brigade receives input at every single stage in the form of the partial column sum current provided

by the correlator template array. The input current is switched on and off through a source-switched

transistor. Integration occurs during a short, fixed-widthpulse determined by the signal�3 (Fig-

ure 4.18). The transistor is switched by the source rather than the gate to prevent charge injection

into the sensitive bucket brigade capacitor node. A similartreatment to that given to the bipolar

mirrors of the log-domain structures of Chapter 3 is given tothe source-switched mirror. Rather

than being a base compensation scheme, its primary purpose is to provide sufficient current to the

mirror at all times to enable it to charge up its own parasiticcapacitances quickly and give the fastest

current-switching response. The parasitic capacitance between the source and gate of the source-

switched transistor will tend to pull down the gate voltage when the source is lowered. If the gate

is part of a simple mirror, then the circuit recovers by charging the parasitic capacitance directly

from the input current, which often is very small. If the mirror cannot recover fully in a short time

compared to the period of�3, then the linearity of the current-to-voltage conversion suffers.

According to the channel-differencing algorithm, there are two matched bucket brigade

devices in the system. The input current from the template array is shared, with the integration pulse�3 alternating between the two BBDs. The output of one bucket brigade must be subtracted from

that of the other, according to Equation (4.13). We accomplish this with the switched capacitor

circuit shown in Figure 4.19. We measure the output relativeto the voltageVref , and scale it by the

ratioC1=C2 (the scale is arbitrary). The circuit must be reset byS1 at the same frequency as the

bucket brigade clocks. The output is valid between the�2 andS1 clocks. The bucket brigade is

fully pipelined, yielding one full correlation at every time step.

4.4.3 Circuit input section

The circuit receives its input as an array of currents from the filterbank frontend system.

We have adopted a system which allows multiple template correlator integrated circuits to be con-

nected to a single filterbank frontend. One template correlator acts as the “master,” receiving the

currents from the frontend filterbank, and producing voltages which are used to mirror the input

140

−

+

−

+

VoutC1

C2

S1

Vref = 1/2 Vdd

−

+

S2

S1

Vin (1)

Vin (2)

(differential)

(top bucket brigade)

(bottom bucket brigade)

Figure 4.19: A switched capacitor circuit to compute channel differences at the output.

currents throughout the array. The remaining template correlators act as “slaves,” receiving the

voltages produced by the master template correlator as input rather than currents. Fanout is not a

major problem due to the small size of the currents and the slow speeds (1 to 2 ms time constant)

at which the input signal changes. Figure 4.20 shows the simple 2-transistor circuit made of pMOS

devices which acts as a switchable current mirror. Making the voltage/current enabling switch the

same size as the switch devices in the memory cells helps to maintain similar surrounds for the input

with respect to the core of the correlator and so improves matching characteristics.

4.4.4 Characterizations of the VLSI Hardware

The integration of current onto the bucket brigade nodes closely approximates a current-

to-voltage conversion, resulting in a linear voltage change at the bucket brigade stage proportional

to the input current. The current-conveyor driver circuitsensure a quick response to the�3 pulse

even for very low-level input currents. The current-to-voltage conversion ideally should be linear;

thus an important characterization of the hardware is determining this response. The linearity can

be determined by randomly selecting one template memory cell, enabling it, disabling all the other

cells, and presenting the system with a single pulse on the same channel as the selected memory

cell, having a duration of one cycle of the bucket brigade. The system is clocked until the output

changes in response to the input pulse, and the height of the output is measured. This procedure

is repeated for a range of amplitudes of the input pulse, and for different randomly-selected array

positions. The response of our system is shown in Figure 4.21.

141

. . .

1-bit template cell

A9

Accum. Pulse (φ3b)

A4

Write

φ1

64 × 16 memory array
. . .

Vgg

Top Bucket Brigade

. . .

. . .

Column Select

φ2

I/Vselect

. . .

A5 A6

Inputs

Bucket

A3

A0

A1

A2

A7 A8

R
o

w
 S

e
le

ct

Vdd

Vdd

. . .

V, Iin (1)

V, Iin (0)

. . .

Vdd

. . .

. . .

. . .

Vcasc

. . .

9/7

9/2

7/2

7/4 7/4

7/3

4/2
4/3

bit in

Vdd

bit0bit0 bit1bit1

Vdd

−

+

−

+

VoutC1

C2

S1

Vref = 1/2 Vdd

−

+

S2

S1

ΦΦ

φ1

VddVgg

φ2

. . .

. . .

. . .

. . .

Bottom Bucket Brigade

Accum. Pulse (φ3t)

VddVdd

Vdd Vdd

Vdd Vdd

. . .
. . .

. . .
. . .

. . .

V, Iin (M)

Vdd

. . .
. . .

. . .

. . .

Drivers

Figure 4.20: The complete correlator array including both bucket brigade devices. Representative
MOS device sizes are given asW=L in units of� = 0.6µm.

142

0 0.2 0.4 0.6 0.8

0

0.5

1

1.5

2

Output to input linearity

Input current (uA)

O
ut

pu
t v

ol
ta

ge
 (

V
)

m
ea

su
re

d
fr

om
 r

ef
er

en
ce

Figure 4.21: Linearity between output voltage and input current.

The charge-transfer efficiency of a BBD is not as high as that for a CCD; the measured

efficiency of our BBD is 99.7% per stage.3 A signal passing through the entire bucket brigade (64

stages) loses 15% of its charge, but this does not significantly affect the classification performance

of the system. Figure 4.22 shows the response of the BBD to a fixed current of 1µA integrated

onto one of the 64 taps in the BBD over a fixed duration (width of�3 pulse) of 3.4µs, then relayed

to the output. We repeat the measurement for each of the 64 BBDtaps. The randomly distributed

variation in outputs (14.5%) is typical for device mismatchin the MOS transistors which mirror the

input current onto the bucket brigade capacitor (see Figure4.20). The charge transfer efficiency is

determined by matching the tail of the impulse response (theslight rise in the baseline reference

toward higher taps) to a simple model of charge transfer.

Disregarding the losses due to charge transfer inefficiency, we can use the output of the

BBD to generate a map of the transistor mismatch across the template, as shown in Figures 4.23

and 4.24 for input levels of 1µA and 100 nA, respectively. Systematic offsets exist in bothchannel

number and time bin, following a vaguely sinusoidal patternsimilar to that reported in [63]. These3This represents the best response out of several fabrication runs. Why the other fabrications showed decreased charge
transfer efficiency for essentially the identical circuit layout has not been determined.

143

10 20 30 40 50 60
0

0.5

1

1.5

2

Bucket brigade impulse response

Distance traveled by pulse (bins)

O
ut

pu
t v

ol
ta

ge
 (

V
)

m
ea

su
re

d
fr

om
 r

ef
er

en
ce

Figure 4.22: Impulse response at each tap of the bucket brigade device.

mismatches vary significantly with current level and thus are impossible to correct to any useful

extent. Fortunately, the correlation is a distributed computation by which most of the random varia-

tion of individual components gets averaged out: we depend on the massively parallel nature of the

correlation to self-correct circuit mismatch.

4.4.5 Experimental Results

We designed and fabricated a chip containing a single template correlator in a standard

1.2µm CMOS technology. The size of the correlator is 700µm � 1170µm. in a 2.2 mm die. Fig-

ure 4.25 is a photomicrograph of the integrated circuit. We tested this chip using an experimental

setup which implements the frontend system (bandpass filterbank and subsequent rectification and

smoothing of the input signal) digitally, on a workstation.This digital signal processing is per-

formed offline, with the resulting sixteen channels of output saved to a file. They are downloaded

as needed to a 16-channel current-mode D/A chip, which produces the nanoamp-level currents used

by the correlator chip. This setup allows us to evaluate the correlator independently of the frontend

filterbank system.

144

20
40

60

5

10

15
0

0.5

1

1.5

2

Time bin

Device mismatch map (impulse response peaks)

Channel

O
ut

pu
t v

ol
ta

ge
 (

V
)

Figure 4.23: Matching between devices throughout the template at 1µA input.

20
40

60

5

10

15
0

0.1

0.2

0.3

Time bin

Device mismatch map (impulse response peaks)

Channel

O
ut

pu
t v

ol
ta

ge
 (

V
)

Figure 4.24: Matching between devices throughout the template at 100 nA input.

145

Figure 4.25: Photomicrograph of the acoustic transient correlator, a 2.2 mm� 2.2 mm die fabricated
in a 1.2µm CMOS technology.

146

Among the tests we performed was to take a template for a pre-recorded acoustic transient

from our simulation program, download it to the chip, then compare its output to that of the simula-

tion program, where both are given the same input. We used twodifferent transients for the input,

one corresponding to the template class and the other a different class example. Figure 4.26 shows

both measured and simulated output of the correlation between the template for “can” and a “can”

sound and a “finger snap” sound as input. Figure 4.27 shows theopposite case, the correlation be-

tween the template for “snap” and the same transient inputs.Residual errors between the simulated

and measured analog outputs are shown at the bottom of each plot. Most of the residual error is

systematic and can be traced to the nonlinearity in the current to voltage conversion (Figure 4.21).

Total power dissipation of the acoustic transient processor depends primarily on the static

dissipation of the amplifiers in the switched capacitor circuit and the bias current in the current

conveyors driving the bucket brigade inputs. At minimal values of these biases allowing correct

system operation (Vcasc = 0.4 V and amplifier bias = 0.6 V), average power dissipation is 30µW

with a peak dissipation of approximately 50µW during the onset of a transient input.

4.4.6 Summary

We have designed and fabricated a chip intended for use as a classifier of transient (short-

term) acoustic signals. A signal to be classified is decomposed into an array of energy envelopes

across a set of frequency channels, and normalized across all channels. The chip uses analog

current-mode circuits to produce an output voltage encoding the running correlation between this

time-frequency representation of the input and a stored template of binary values. The pattern-

classification algorithm which the chip implements has beenshown through simulation to be robust

to binarization of the template values when the template values encode the expected sign of the time

sample or pairwise channel difference of the normalized inputs.

Test results show that the chip output voltage closely follows predicted values from sim-

ulations. The chip can be used to classify acoustic transient events quickly, accurately, and with

a high degree of robustness due to a parallel, pipelined architecture. The power consumption of

30µW per template is significantly lower than that for a DSP or microprocessor performing the

same computation, and the layout area of 700µm� 1170µm per template allows a high integration

density.

147

0 25 50 75 100 125 150

−1

−0.5

0

0.5

1

1.5

2

0 25 50 75 100 125

−1

−0.5

0

0.5

1

1.5

2

Figure 4.26: Measured correlation of repeated sounds “can”(left) and “snap” (right) with the “can”
template loaded into chip memory.

0 25 50 75 100 125

−1

−0.5

0

0.5

1

1.5

2

0 25 50 75 100 125 150

−1

−0.5

0

0.5

1

1.5

2

Figure 4.27: Measured correlation of repeated sounds “can”(left) and “snap” (right) with the “snap”
template loaded into chip memory.

148

4.5 The Digital ATP

A notable conclusion from the software trials of the Acoustic Transient Processor was the

observation that comparing binary inputs against binary templates, contrary to early results (which

were flawed), yields results comparable to the continuous-valued input case. In some trials, the

results from the binary-binary case were better than those for any other configuration.

Consequently, it is possible to build a correlator which is entirely digital. It is not “digi-

tal” in the traditional sense of a DSP or microprocessor, with floating-point operations on wide data

busses, but rather involves operations efficiently and simply implemented at the bit level with op-

portunities for significant amounts of parallelism. The frontend processor of such a system remains

analog (though not necessarily continuous-time), and may in fact be the same frontend as designed

for the original ATP system. Three changes to the frontend architecture should be noted:� Because the L-1 norm function does not change the relative signs of the outputs, but only

serves to scale the entire output, the normalization does not change the binary output and may

be omitted.� Each output is compared against that of its neighboring channel using a comparator and the

result is a single bit per channel. There is one less output than there are channels.� The outputs also may be compared against a single threshold value resulting in a second bit

per channel. This gives some minimal amplitude information, and can be used to prevent

the system from responding to noise during quiet periods of the input. Typically, the two-bit

output will be evaluated as a trinary number taking on values�1, 0, and1.

The frontend filterbank system as proposed can be considereda “smart A/D” which takes a contin-

uous-valued input and produces a set of, say, 16 to 32 bits comprising a feature vector evaluated at

1 ms (or similar) intervals.

4.6 Digital correlator custom VLSI architecture

Because a binary-valued input significantly decreases the complexity of the associated

correlator circuitry, it is possible to explore more complex encoding schemes for both the input and

template, such as binary-trinary and trinary-trinary correlations. There are additional reasons to

investigate alternate ways to produce an efficient correlation value. In the additional software trials,

149

binary-binary correlation resulted in excellent classification accuracy. However, continuous values

of the inputs were used to determine the binary templates, even though only binary inputs were

presented to the system during the classification test. Alternate methods of template generation are

required when a quantized representation of the input classis all that is available during training.

The methods used are explained in Section 4.9.

In a system using continuous-valued inputs, channel differencing produces both positive

and negative results, and so it is beneficial to commute the difference operation to the end of the

system to avoid the necessity of manipulating signed valuesthroughout the system. In a system with

binary or trinary inputs, however, signed-value computations are reduced to simple logic operations

(see Table 4.8. Thus arithmetic manipulation of signed values is not a problem, and it is desirable to

reduce the input channels to binary form as soon as possible in the stages of processing. The channel

difference operation optimally should be assumed by the frontend system, computed prior to the

correlation summation, thus greatly reducing the complexity of the correlator. The multiplication

takes the form of an exclusive-or operation between each input bit and the corresponding template

bit for the case of binary-binary correlation. The trinary-trinary case uses the same exclusive-or

between the sign bits of the input and template, but uses an “and” operation between the amplitude

bits of input and template. This correlator logic is clarified in Table 4.8.

template input accumulate
sign sign

0 0 +1
0 1 �1
1 0 �1
1 1 +1

template input accumulate
ampl sign ampl sign

0 X X X 0
X X 0 X 0
1 0 1 0 +1
1 0 1 1 �1
1 1 1 0 �1
1 1 1 1 +1

Table 4.8: Left: logic for the binary-binary correlation operation. Right: logic for the trinary-trinary
correlation. “X” represents a don’t-care condition.

A good strategy for the digital system if a custom chip were tobe designed and built would

be to keep the same parallel column-wise configuration as themixed-mode design, and to keep the

template SRAM cell incorporated as an integral part of the system. A first impression might be

to perform the correlation as an addition using adder circuits. In other words, the bucket brigade

device would be replaced by a combination adder and shift register. However, multi-bit arithmetic

consumes space, and in a layout it is impossible to fit the pitch of the adder/shift register cells to the

pitch of the SRAM cells.

150

In digital design, particularly in regard to adders and multipliers, a convenient way to

reduce circuit complexity is to shift the burden of the processing from space to time by serializing

part or all of the process. This is exactly what is called for in the case of the ATP correlator, since

once the system has been pipelined column-wise, the number of serial operations performed per

template per unit time is small: in fact, it is one exclusive-or followed by a single addition followed

by a register shift. This leaves considerable opportunity for serial operation. Namely, the addition at

each column can be replaced by a counter, in which the input ispresented one channel at a time; this

architecture is shown in Figure 4.28. There are two lines percolumn: one to hold the input value,

selected by row, and one to hold the template value, also selected by row. Only one exclusive-or

gate is required, at the bottom of the column, and the result of the exclusive-or sets the direction of

an up-down counter that performs the summation serially foreach row. At the end of each input

cycle, the contents of each counter are shifted over to the next column, where the counting continues

on the next cycle. The counter under each column needs only beas many bits wide as the maximum

count possible at that column, so the size of the counter (in bits) is proportional to the log of the

column number.

Input (32 channels)sample/hold

channel counter time bin counter

Template (32 channels × 100 time bins)

Input sign

amplitude

event clock

channel address time bin address

column sumcount

+1/−1

Adder

sign

sign

amp

amp

Input

(100 time bins)

Figure 4.28: Block diagram of the sequential digital correlator architecture.

4.7 Digital correlator semicustom FPGA architecture

Even under the condition of an input presented serially rather than in parallel, the compu-

tational requirements are not great and the digital system can be operated on a long cycle time and at

low power. The entire correlation can be made serial withoutexceeding the capabilities of off-the-

shelf TTL and/or CMOS IC components. While a board-level design cannot be as power-efficient,

compact, or scalable as a custom digital VLSI design, it can be made quite cheaply and with a short

development time. Consider a rather large system, equivalent to the largest systems simulated in

151

the software trials of the ATP, which has a 32-channel input and a 32� 128 binary template. An

entirely serial operation for a single template requires counting 4096 times within the 2 ms input

sample timeframe. If the counter can be run flat-out at one count per clock cycle, a driving clock

of only 2 MHz is required. This is slow enough to allow the system definition to be expanded to

include trinary operations, so that template and input values are 2 bits wide and take on the effective

values[�1; 0;+1]. Trinary-valued operations require twice as much memory and twice the clock

rate.

The resulting template size of 8192 bits is not chosen arbitrarily, as we consider a de-

sign using semicustom FPGA and off-the-shelf parts. A good choice for the FPGA is an Actel

1000-series part, which features one-time-programming (OTP) using fuse-like connections which

are activated with externally applied voltages. The cheaper types of FPGAs come with numerous

configurable combinatorial and sequential logic modules, but on-board memory is only available

through the use of sequential modules as latches or flip-flops. Large blocks of memory are not

possible (except on the more expensive FPGAs). However, it is relatively simple to build the state-

machine circuitry necessary to interface the FPGA to external memory, particularly as there are

plenty of input/output ports available for address and databuses. SRAM chips come in a small

number of standard sizes, one of which is 8K� 8 (that is, 13 address bits (213 = 8192) and 8 data

bits), a configuration which allows 8 templates to be stored and read in parallel. In this configu-

ration, rather than treating the 8-bit data bus as a single byte, we treat the bus as 8 separate 1-bit

values. There are, of course, alternate ways to arrange the templates in memory, but having all tem-

plates addressed in parallel is the most efficient for several reasons which should be obvious from

the following discussion.

The next step is to determine how to deal with stored values during the course of the

correlation computation. The system has to compute a correlation based on the current and past

values of the input, so either it must store the input values over the time span of the template, or

it must store intermediate column results in a pipelined manner, as described above for the custom

VLSI architecture. Storing the input requires 32 bits� 128 samples. On the other hand, storing

intermediate values requires only 13 bits� 128 columns (13 bits are required instead of 12 due

to the trinary operations: the total range of the output is from�4096 to+4095, which is a 13-bit

result).44This value is an upper limit. Fewer bits are required if a convenient way can be found to pack the results, since the
first column result requires only 6 bits, with the number of bits growing as the log of the column number as noted above.
In practice, packing the columns is a procedure too complicated to be worthwhile using in a serial implementation.

152

The solution I adopted was to use the same template SRAM chip to keep the intermediate

column results. The most simply implemented solution is to allow the intermediate store area to take

away from the column space used by the templates. This leavesthe number of columns unknown,

but with the number of channels fixed at 32, determined by the following relation,8192 � 2(32n) + (16n); (4.25)

where we allow 16 bits for each intermediate result for the sake of simplicity in imple-

mentation, even though only 13 bits are necessary. The largest numbern which satisfies the relation

is n = 102. In the implementation we rounded this to 100, for reasons ofconvenience, one of

which was to allow room to store the final correlation result.The memory allocation in the SRAM

is depicted in Figure 4.29.

0 81926400 6592

100 blocks
of 16 bits

100 blocks
of 64 bits

Template class 1

Template class 2

Template class 3

Template class 4

Template class 5

Template class 6

Template class 7

Template class 8

Intermediate

Column

Results

Channel 1 Channel 32

Sign Amplitude

±1 0,1

Figure 4.29: Memory allocation in the digital correlator SRAM.

Accessing memory is a matter of building a semicustom chip with a variety of binary

counters. One seven-bit counter is needed to count from 100 to zero. The count must be downward,

in order to effect a shift towards the output by reading each intermediate column sum, accumulating

over the number of input channels, and placing the result into the storage area for the next column

153

up. Template values are counted in blocks of 64 (32 channels� 2 bits per template value) starting

at SRAM address zero and counting up. Intermediate column sums are counted in blocks of 16,

starting at SRAM address 8191 and counting down. The two values are easily obtained by inverting

and shifting the output of the seven-bit counter and multiplexing, as shown in Figure 4.30. Addi-

tionally, the column address to write to is easily obtained by latching the seven-bit counter output

before each new count.

7-bit down counter

6-bit down counter

4-bit down counter
1 1 10 0 0 0

7-bit latch

Inverters (× 7)

2-1 M
U

X
 (× 13)

1
1 SRAM

(8k × 8)

2-1 MUX (× 7)

Data bus in/out

Figure 4.30: SRAM address generator for the digital correlator.

A simple finite state machine can determine the correct cycleof addressing, reading, and

writing the SRAM. The state diagram of this machine is shown in Figure 4.31. It requires only 4

state variables and can be easily designed by hand in one evening. The complexity of the FSM is

enough to prohibit the use of gate-level IC components. However, it is just about the right size for

a semicustom FPGA part such as an Actel 1020, which at the timeof writing could be bought for

under $15 each. The digital architecture was designed with cost and time of development as the

primary constraints. To keep the costs down, the design was split into three parts: An SRAM for

154

template and column sum storage, one Actel 1020 part for the finite state machine controller, and

another Actel 1020 part for the correlator itself.

2

1

3 4 5

wait on input

input ready

count incr/load input

count < 32

count = 32
reset 100 count

count = 100

count < 100

6

7

count = 16

count = 64

count = 16

count < 16

count < 16

count < 64

shift in column sum

shift out column sum

correlate

decrement counter

Figure 4.31: Digital correlator controller state diagram,simplified.

The correlator semicustom chip consists of eight registersin parallel, one for each data

bit of the SRAM. Each register is a 13-bit arithmetic unit capable of 2’s-complement increment and

decrement and a right shift/rotate operation. At the front of each register is logic for translating the

two bits of input and template into their trinary values and determining the appropriate counting

operation (increment, decrement, or no operation). The correlator is depicted in Figure 4.32.

12-bit up/down counter and shift register

latch

Address lsb
SRAM data

input data

C

A

B

C

S

QD
S

0

1

C

A

B

C

S

QD
S

0

1

C

A

B

C

S

QD
S

0

1

C

A

B

C

S

QD
S

0

1

. . .

. . .

. . .

. . .

. . .

Output

clock

count direction

shift/count
0

Figure 4.32: Serial digital correlator structure for one template.

In addition to the functions directly associated with the correlation, the correlator chip is

also capable of performing a simple analysis of the output ateach timestep and determine if any

output exceeds a threshold and, if so, which output has the maximum value. The serial fashion in

which the rest of the architecture is implemented makes thisfunction especially simple. At the end

of the first accumulate cycle, after a new input vector is presented to the system, the last column

155

sum, which holds the correlation result, is shifted out MSB-first for writing to SRAM. At that point,

each of the eight correlations can be compared one bit at a time from the most significant bit to the

least significant bit in order to select the maximum (there can be more than one winner if several

templates produce the same result). A threshold value can beinjected into the system serially, as

if it were a ninth correlation output. Because this particular output selection mechanism is kept

simple on purpose in order to fit on a single chip, there is onlyone global threshold rather than a

threshold for each channel. The global threshold value is presented in parallel to the controller chip,

which broadcasts the value serially to the correlator chip at the appropriate time on each input cycle.

This setup preserves the scalability of the architecture, in which a single controller chip can service

multiple correlator chips. Each correlator chip sends and receives one bit of information necessary

to spread the maximum-finding calculation over all the correlator chips in the system in order to

produce a global maximum.

Actel parts are able to drive moderate loads such as LEDs. Theoutput maximizing circuit

generates separate outputs for each template in the system,which can in turn drive an LED bar-

graph array for a demonstration system capable of lighting aspecific LED in response to one of

several input transients.

The printed circuit board developed for this application (Figure 4.33) includes space for

one controller FPGA, two correlator FPGAs, an interface to the frontend system which provides the

inputs, and an interface to a digital I/O card on a computer through which the template values can

be programmed. Fully populated, the board can simultaneously compute 16 template correlations

at 1 ms intervals.

4.8 The Switch-Capacitor Frontend

The constraints on the architecture of the frontend system are somewhat looser with the

digital ATP used as a backend instead of the analog correlator. For instance, the frontend does not

need to compute the L-1 normalization, as mentioned above inSection 4.5. The rest of the system

remains the same, and the output requires comparators to perform the pairwise channel differences

and produce the binary result.

The custom analog VLSI frontend system had several problems, the main one being the

factor of (up to) three difference in gain across channels. Unfortunately, large component mismatch

is a fact of life with MOSIS processes such as the AMI 1.2µm process used to fabricate the frontend

chips, and heightened sensitivity to mismatch is a fact of life with high-Q systems. And although

156

Figure 4.33: Digital ATP correlator system, configurable for up to sixteen templates.

157

some gain mismatch can be tolerated by the transient classification algorithm, mismatch of the sort

encountered in our fabricated versions of the log-domain circuit cannot (without adaptation or other

corrective circuitry).

I investigated a board-level design using switched capacitor filters to generate real-time

frequency decompositions of an audio or computer-generated input. This design effort was in part

to explore a different frontend architecture for use with the digital correlator, and partly for com-

parison with the custom integrated circuit log-domain frontend. Of particular interest is how good

the matching between channels is for the switched capacitorsystem, and whether the gain in per-

formance is worth the tradeoff in integration density and power consumption. Like the design of

the correlator, a custom VLSI analog integrated circuit would ultimately achieve much better power

efficiency and area efficiency, but a board-level system is anexcellent demonstration of the concept

which can be developed in short time at relatively low cost. The cost of the component-level sys-

tem is, in fact, about the same as a small custom chip (4 mm2) fabrication (through a cost-efficient,

shared process such as MOSIS). The bandpass filter configuration of the log-domain chip can be

efficiently reproduced in a commercially available dual general-purpose second-order switched ca-

pacitor filter IC. Each of the two filters on each chip can be wired as a bandpass filter. The first

section uses 3 external resistors to form a fixed-Q (Q = 10) bandpass filter with a gain equal (or

proportional) to theQ and a center frequency determined solely by the clock frequency. The second

section uses 2 external resistors to form a bandpass filter ofQ = 1 with a gain of 1 and center

frequency equal to that of the first bandpass filter. The second filter uses the mode 1A configuration,

which yields two bandpass outputs, one inverted, one not. WhenQ = 1, these two outputs are of

equal magnitude. These symmetric outputs can be combined with a comparator and a multiplexer

which passes the maximum function to its output, thus realizing a full-wave signal rectifier. Another

switched capacitor filter chip, a 4th-order Butterworth lowpass, smooths the rectified output. Two

more comparators complete the channel: One computes the difference with the neighboring chan-

nel, and the other computes the difference with a global threshold. The thresholding comparison

allows the signal input to have trinary values of two bits each encoding values of[�1; 0;+1]. I

designate these two bits “sign” and “amplitude”, with the trinary encoding shown in Table 4.9. The

digital semicustom system described in the previous section is designed specifically to allow any

combination of trinary and binary correlations.

There are two choices for clocking the bandpass filters. One is to place the burden of

determining the center frequencies on the filter design, by using mode 2 or mode 3 filters, whose

center frequency can be adjusted relative to the clock frequency. That way, only one master clock

158

ampl sign trinary
L X 0
H L �1
H H +1

Table 4.9: 2-bit Sign-amplitude trinary representation ofinput and template values in the digital
ATP. “X” represents a don’t-care condition.

drives all the filter chips (plus perhaps a few clock signals derived by dividing down the master clock

by powers of two through a series of flip-flops), but each filterrequires a specific set of resistor

values to create the correct gain andQ for the channel. Generated this way, filters are difficult

to match. The other method is to generate a separate clock foreach filter. A convenient way to

generate the necessary clocks is to divide a suitably large master clock signal by integer values, one

for each channel. This method is hardware-intensive, but itis completely digital and therefore can

be programmed into a semicustom part such as an Actel chip, a small one of which is about the

right size for driving a 32-channel system. It is also possible to make the system programmable, so

that the board-level system enjoys an additional gain over the custom chip of allowing Mel-scale

spacing (or, for that matter, arbitrary spacing) between bandpass centers.

Figure 4.34 depicts a complete bandpass channel. Each channel requires two chips: One

MF10CCN dual general second-order filter and one MF4CN 4th-order Butterworth lowpass filter

(both device numbers refer to National Semiconductor parts; pin-compatible devices are made by

Linear Technologies). Three additional chips are shared between channels: one LM319N dual high-

speed comparator, one LM339N quad comparator for the output, both shared between two channels,

and one CD4053 triple 2-to-1 analog multiplexer, shared between three channels. External compo-

nents are limited to five resistors for the bandpass filters (of which four have the same value; DIP-

style resistor packs help improve matching characteristics), three pullup resistors (in SIP packages

for minimum space) to interface the CMOS and TTL-compatibleparts, and a resistor-capacitor pair

to create a simple continuous-time antialiasing filter between the rectifier and the lowpass filter. To

interface to the serial input method of the digital correlator, a few additional digital multiplexers are

required at the output (a tree of four 8-to-1 muxes followed by one 4-to-1 mux, for a 32-channel

system).

A separate system drives the filter inputs. This system consists of a microphone connector,

a single-chip audio preamplifier (Analog Devices SSM-2017)followed by a simple R-C antialiasing

filter and buffer (see Figure 4.35) [64]. The audio input has programmable gain and can be coupled

to a buffered controller such as a sound card PCM codec on the controlling computer to generate

159

−

+

f0 clock

Vin

fast comparator
analog MUX

antialias filter

switch-cap bandpass

switch-cap lowpass

Vdd

−

+

−

+

Vthresh

output, channel i −1
Vdd

Vdd

comparators

Q=10

gain=1
gain=−1

output, channel i

Sign

Amplitude

f3dB clock

S0

1

30kΩ

1nF

LM319-1
LM339-1

LM339-2CD4053-1

MF4CNMF10CCN-1 MF10CCN-2

Q=1

Figure 4.34: Switched-capacitor bandpass filterbank, single channel.

analog outputs which feed the audio preamplifier in similar arrangement to the analog microphone

input.

The digital correlator system provides handshaking signals necessary to keep the correla-

tor and computer in synchrony; otherwise, using microphoneor other real-time input, the handshak-

ing must be generated on the frontend side with a 1 ms-period clock (generated from the 20 MHz

master clock using four four-bit decade counters in series). This setup assumes that the correlator

system is clocked fast enough to keep up with the input, so that the “wait-on-input” handshaking

signal provided by the correlator is not required.

−

+

+18V

−18V

SSM-2017

Output
Ref

10Ω

10Ω

6.8kΩ

6.8kΩ

47kΩ

10kΩ

10kΩ

1N5231 (12V)

In +

In −

47µF

47µF

200pF

Figure 4.35: Audio input circuit for the frontend system.

A reasonably-sized printed circuit board can handle around16 channels, so the system

was designed for two boards, each of which produces half of the 32 outputs, and which work to-

gether such that only one board has an input section, one board contains the master 20 MHz clock,

one board contains the final 4-to-1 multiplexer that communicates directly with the correlator sys-

tem, and one board contains a 12-bit D/A converter (Maxim MAX530) generating the bias voltage

for determining the threshold at which output signal level causes the amplitude bit to change state.

160

Figure 4.36 is a photograph of one of the two filterbank boards.

Figure 4.36: One board of the switched capacitor frontend filterbank, bandpass filtering and encod-
ing the audio input into sixteen parallel channels.

4.9 Experimental results of the trinary-trinary correlation hardware

4.9.1 Method of input segmentation

When training a template correlation system using the average value of the training set

examples, the output can only be expected to produce a reliable classification when the input is

perfectly aligned to the template, not shifted in time to theright or to the left. This is very clearly

shown in the output response of the trinary-trinary correlator as shown in Figures 4.40 and 4.41, in

161

which the output for the target class, though strong and persistant at and near the point of best align-

ment, is accompanied by spurious false classifications awayfrom the alignment point. These false

classifications can be ignored only if the segmentation algorithm correctly identifies the presence

of a transient event and predicts the correct time at which toaccept the classification result. Mak-

ing the correlation output temporally shift-invariant is the purpose of some of the training methods

discussed in Chapter 5, such as Independent Component Analysis, Support Vector Machines, and

Perceptron Neural Networks. Any system which assumes exactalignment of the input and tem-

plate requires a robust segmentation algorithm to predict the best point of alignment. Software trials

of the continuous-valued input, binary-valued template architecture used a segmentation scheme

amenable to analog hardware, shown in Figure 4.37. The raw output of all channels of the frontend

system (after normalization) were thresholded, summed together, and binarized by another thresh-

old, resulting in a “noisy” segmentation. The noisy segmentation result was filtered in parallel by

two lowpass functions with time constants of 1 ms and 10 ms, respectively, thresholded once more,

and combined with an OR operation. The longer time constant ensured a clean segmentation for

the duration of the input transient, while the shorter time constant ensured a quick reponse of the

system to the onset of a transient event.

threshold

threshold

threshold

threshold

threshold

threshold
lowpass
τ = 1 ms

lowpass
τ = 10 ms

Σ

Channel 1

Channel 1

Channel M
. . .

. . .

"noisy" segmentation

"clean" segmentation

Figure 4.37: A mixed-signal method for detecting the onset of a transient event from the output of
an analog frontend filterbank.

For the trinary-trinary correlator, it was desirable to have a similarly simple algorithm

for segmentation, but one which could operate on the trinaryfrontend system output using purely

logical operations in keeping with the rest of the correlator system rather than relying on analog

computation. An algorithm which proved adequate to the taskis the finite state machine shown in

Figure 4.38. This is essentially a binary version of the original segmentation algorithm. The first

threshold function is taken care of by the frontend system itself in the production of the amplitude

bit on each channel. The segmenter sums the amplitude bits across all channels, producing a value

162

which is denoted bya in the figure. The valuea is thresholded by comparing it to a constant

value, which was chosen as 7 for a system of 32 frontend filterbank channels. The two filters are

approximated by a system of two counters whose timeouts allow the system to ignore short glitches

in the “noisy” segmentation. Although the segmentation algorithm must operate in real-time, it can

operate with a large amount of delay, because the transient onset occurs 100 samples (1/10 second)

before the point of optimal alignment of input and template.

2

1
3

4

a < 7

a >= 7

wait for event
a >= 7

a < 7

float

c2 = X

event detected

a >= 7

c1 = 4

always

armed

c2 0

c1 0
c1++
c2++

c1++

c2 0
X 2

X 20
Segment

a < 7

c1 = 4

Figure 4.38: A simple finite state machine which detects the onset of transient events in the trinary-
valued frontend filterbank output.

4.9.2 Method of template generation

Trinary input values and trinary template values allow numerous variations on both the

method of tempate generation and the method of correlation computation. Here we present only the

most effective of those training algorithms we investigated. The method presented below assumes

that all events in the training data have been “tagged” by a segmenter, whether real-time or non-real-

time, automatic or human, and that values in the input arrayx[t;m] take on valuesf�1; 0;+1g:
1. For all events in the training dataset:

(a) Align the training data on tags and fill to length of template (100 samples).

(b) Sum all aligned instances of each class using the relationp[n;m] = p[n;m] + x[t� n;m]: (4.26)

163

2. Threshold the template values using the relationp[n;m] = 8>>><>>>: 1 if p[n;m] > 0�1 if p[n;m] < 00 otherwise

(4.27)

4.9.3 Experimental Results

The performance of the trinary-trinary correlator was confirmed using the same cross-

validation test as for the original software simulations ofthe algorithm, except that the hardware

itself performed the frontend time-frequency decomposition and the correlation summation. Tem-

plates values were determined offline using data obtained from the frontend hardware. Figure 4.39

shows the templates derived from frontend system data for one step of the cross-validation test.

Figures 4.40 and 4.41 show example outputs of the frontend system, the correlator, and

the segmenter at two times during the cross-validation test. For these four input transients, the

correlator performed correct classification. The threshold value which the frontend system uses to

determine the amplitude bit for each channel output is a degree of freedom affecting system perfor-

mance in trinary-trinary correlation tasks (in binary-binary correlation, the amplitude bit is ignored,

so the threshold has no effect on system performance). If thethreshold is too high, then the trinary

frontend output values become zero always, and the correlation fails, setting a clear upper limit on

the optimal threshold value. If the threshold is zero, then the frontend output becomes the same

as for the binary case. It is not obvious that this should degrade performance, particularly since

in the original software trials binary-binary correlationperformance was very close to that for the

baseline algorithm. In practice, however, averaging the binary training data produces templates in-

ferior to those produced using continous-valued training data, and performance suffers. The optimal

threshold voltage is only meaningful in the context of inputtransduction, audio preamplifier gain,

and bandpass filter gain, but may be determined empirically from correlation performance under

conditions of different threshold voltage.

The remaining tables (4.10 through 4.12) represent the accumulated statistics from several

runs of the cross-validation test. The first, Table 4.10, is asimple test of the performance of the

system in the absense of a real-time segmenter, in which the correlation value is accepted at the

time of best known alignment of each input transient. The result represents the best performance

the system can achieve in an off-line recognition task, which is 99.0%.

Table 4.11 shows the result from the same task repeated usingthe finite state machine

164

Bar Book Can Dink

10 20 30

10

20

30

40

50

60

70

80

90

100

tim
e

(s
am

pl
e)

10 20 30

10

20

30

40

50

60

70

80

90

100

10 20 30

10

20

30

40

50

60

70

80

90

100

10 20 30

10

20

30

40

50

60

70

80

90

100

Door Finger Hand Mallet

10 20 30

10

20

30

40

50

60

70

80

90

100

tim
e

(s
am

pl
e)

10 20 30

10

20

30

40

50

60

70

80

90

100

10 20 30

10

20

30

40

50

60

70

80

90

100

10 20 30

10

20

30

40

50

60

70

80

90

100

Shelf Tub Unknown Unknown

10 20 30

10

20

30

40

50

60

70

80

90

100

tim
e

(s
am

pl
e)

frequency (channel)
10 20 30

10

20

30

40

50

60

70

80

90

100

frequency (channel)
10 20 30

10

20

30

40

50

60

70

80

90

100

frequency (channel)
10 20 30

10

20

30

40

50

60

70

80

90

100

frequency (channel)

Figure 4.39: Templates for twelve transient classes, determined from data obtained from the fron-
tend hardware. Frequency is on thex-axis, with the lowest frequency channel on the right, and time
is on they-axis, with the transient onset at the bottom of the template. Colors correspond to trinary
values as follows: black =�1, white =+1, gray =0.

165

Bar Book

200 400 600 800 1000 1200 1400

10

20

30

fr
eq

ue
nc

y
(c

ha
nn

el
)

200 400 600 800 1000 1200 1400

2

4

6

8

10

12

cl
as

s

0 200 400 600 800 1000 1200 1400
0

1

2

time (sample)

Figure 4.40: System input and output for sound “bar” (left) and “book” (right). Top graph is the
frontend system output (32 channels); middle graph is the correlation output over 12 classes; bottom
graph is the output of the segmenter showing both the segmented transient and the optimal point of
alignment.

166

Shelf Tub

200 400 600 800 1000 1200 1400 1600 1800 2000

10

20

30

fr
eq

ue
nc

y
(c

ha
nn

el
)

200 400 600 800 1000 1200 1400 1600 1800 2000

2

4

6

8

10

12

cl
as

s

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

time (sample)

Figure 4.41: System input and output for sound “shelf” (left) and “tub” (right). Top graph is the
frontend system output (32 channels); middle graph is the correlation output over 12 classes; bottom
graph is the output of the segmenter showing both the segmented transient and the optimal point of
alignment.

167

Event Bar Book Can Dink Door Finger Hand Mallet Shelf Tub
Bar 20 0 0 0 0 0 0 0 0 0

Book 0 20 0 0 0 0 0 0 0 0
Can 0 0 20 0 0 0 0 0 0 0
Dink 0 0 0 20 0 0 0 0 0 0
Door 0 0 0 0 20 0 0 0 0 0

Finger 0 0 0 0 0 20 0 0 0 0
Hand 0 0 0 0 0 1 18 0 0 0
Mallet 0 0 1 0 0 0 0 19 0 0
Shelf 0 0 0 0 0 0 0 0 20 0
Tub 0 0 0 0 0 0 0 0 0 20

Total instances presented: 199

Correct: 197

Incorrect: 2

Accuracy: 99.0%

Table 4.10: Offline recognition task: Cross-validation on the transient dataset using a non-real-time
segmenter.

segmenter shown in Figure 4.38. The main loss in performanceis due to the detection of transients

which are not part of the input data set classes. Inspection of the original recordings revealed that

these “spurious” transients are at least as loud as some of the actual transient class examples, and

so the segmenter should be expected to detect them and consider them to be transients in the input.

The majority of these transients belonged to the recording “door” and correspond to the sound of

the door being opened (however quietly) between each targetinstance of the door being closed.

The spurious transient events were hand-tagged as new transient classes labeled “unknown,” and

the cross-correlation task was performed again. The resultof hand-tagging the data, shown in

Table 4.12, is over 95% accuracy. Apparently some of the spurious events were indistinguishable

from handclaps, as shown by the mistaken identity of all three examples of one “unknown” class.

Problems like this account for the relatively low recognition rate (96.4%) of the baseline algorithm,

which otherwise should be guaranteed virtually perfect results on linearly separable data. The cross-

validation tests results confirm that the simple trinary-trinary correlation method approaches the

baseline algorithm in accuracy, even when only trinary-valued time-frequency decompositions of

the audio input are available for training, and when a simplefinite state machine consisting of a few

small binary counters and assorted logic is used to segment the input.

168

Event Bar Book Can Dink Door Finger Hand Mallet Shelf Tub
Bar 20 0 0 0 0 0 0 0 0 0

Book 0 20 0 0 0 0 0 0 0 0
Can 0 0 19 0 0 0 0 1 0 0
Dink 0 0 0 18 0 0 3 0 0 0
Door 0 0 4 0 20 13 6 4 0 0

Finger 0 0 0 0 0 19 1 0 0 0
Hand 0 0 0 0 0 5 14 0 0 0
Mallet 0 0 1 0 0 0 1 17 1 0
Shelf 0 0 0 0 0 0 0 0 19 0
Tub 0 0 0 0 0 0 0 0 0 20

Total instances presented: 199

Total events found: 226

Correct: 186

Incorrect: 11

Missed: 2

Extra event inserted: 25

Correctly identified: 93.5%

Incorrectly identified: 5.5%

Missed: 1.0%

Insertions: 12.6%

Table 4.11: Real-time recognition task: Cross-validationon the transient dataset using the simple
finite state machine segmenter.

169

Event Bar Book Can Dink Door Finger Hand Mallet Shelf Tub ? ?

Bar 20 0 0 0 0 0 0 0 0 0 0 0
Book 0 20 0 0 0 0 0 0 0 0 0 0
Can 0 0 24 0 0 0 0 0 0 0 0 0
Dink 0 0 0 20 0 0 0 0 0 0 0 0
Door 0 0 0 0 20 0 0 0 0 0 0 0
Finger 0 0 0 0 0 17 1 0 0 0 0 2
Hand 0 0 0 0 0 1 19 0 0 0 0 0
Mallet 0 0 2 0 0 0 0 18 0 0 0 0
Shelf 0 0 0 0 0 0 0 0 20 0 0 0
Tub 0 0 0 0 0 0 0 0 0 20 0 0

? 0 0 0 0 0 3 0 0 0 0 0 0
? 0 0 0 0 0 0 0 0 0 0 0 7

Total instances presented: 215

Total events found: 214

Correct: 205

Incorrect: 9

Missed: 1

Correctly identified: 95.3%

(In set of known targets): 97.2%

Incorrectly identified: 4.2%

Missed: 0.5%

Table 4.12: Real-time recognition task: Cross-validationon the transient dataset using the simple
finite state machine segmenter. In this transient set, spurious transient events were hand-tagged as
“unknown” classes (denoted by a question mark).

170

