Chapter 4

Acoustic Transient Processing

4.1 Introduction

4.1.1 The Problem of Speech Recognition

Speech recognition is an inherently difficult problem on yndifferent levels. For many
years, thousands of companies worldwide have put tremenadoney and effort into the problem.
Undeniably, they have made many important gains, and cdupih the phenomenal advances in
speed and efficiency of computer hardware, have brought rigterdidiments of practical speech
recognition from the research centers to the office and hddnéortunately, speech recognition is
the type of problem that requires exponentially increasaspurces for linear gains in accuracy. It
is generally acknowledged that human-level accuracy iedpeecognition requires the resources
currently available only in the human brain—measured inréimge of terabits and processed with
a high degree of parallelism and amazing efficiency. It iy Vigely that the reason no other animal
on Earth uses language is a specific threshold in complekibyedirain which only humans exceed.
The fact that the number of neural synapses in the brainshef shammals is also in the trillions
suggests that speech recognition comes about from a cotiabired factors including brain size,
structure, complexity, and the capabilities of the sensgsfems which connect the organism to its
environment.

Consequently, in regard to electronic speech recogniierhaps the proper question to
be framed is not how well they perform in an absolute sensehdw well they are doing given
the resources they have to operate, and how robust they dee non-ideal conditions. This latter

point is not a minor one. Current research in automated Spexognition tends toward the goal
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of increased absolute accuracy with fixed resources, whighaiely renders the systems more
fragile. Undoubtedly, what is required for better speeaogaition is greater hardware resources
in size and complexity. This is almost certainly the futufee@mputer speech recognition as the
discipline matures. It is analogous to the evolving stateashputer display systems: Years ago,
computer CPUs were responsible for the task of dealing withgbout all tasks concerned with the
visual output. All tasks more involved than piping bits te tmonitor were performed in software.
Eventually, it became clear that unless the bulk of grapéliated processing was taken away from
software and given over to high-speed, highly parallel ceteid hardware, visual displays were not
going to get much beyond the stage of text and occasionaleiling drawing. Today, video card
technology is practically running away from the ability abgrammers to make use of it. Video
cards have their own large stores of memory (typically 8 MBun full-motion video in 24-bit
color on a large display) and handle tasks from MPEG comjmess video to color Gouraud
shading of millions of 3-dimensional triangles per secoi®peech recognition has not been an
absolute necessity for computers, and so the developmespteeich recognition hardware has not
been driven like the development of video display hardwé&itesome point in the future, though,
it is bound to happen. The massive parallelism requireddbust speech recognition will require
dedicated hardware, something that can wander off on itspracessing time and resources and
return probabilities of the occurrence of various words phrhses, topical information, speaker
identification, language recognition, and the like. Theropcocessor will once again be free to

work on “more important tasks.”

4.1.2 Acoustic Transients

Let us step back a moment from the problem of speech recognitCurrent software
programs for speech recognition pursue the problem in asaftware-specific way. That is to say,
knowing that the underlying microprocessor is a serial @ewith limited parallelism, what steps
are most important to make optimal use of this limited rese@rThe result is systems which tackle
the problem primarily in a top-down manner. On the other hangpose that we want to look at
the problem in a bottom-up manner, making no assumptionatahe underlying hardware, but
developing the hardware to be that which best solves thdgob

Now let us take another look at biology. Long before there sygsech recognition, there

LEventually, the dedicated peripheral hardware will edifise microprocessor itself, which will primarily be con-
cerned with managing the interactions between them. Suidtrébdted system ends up, for obvious reasons of efficiency
of design, looking structurally rather like the human brain
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was sound recognition, just one part of a large array of mashes to help an organism interpret its
environment. Most species of animal larger than insecte kame form of auditory system, often
quite complex as in the case of birds and birdsong. Humaresdaxeloped the capability of speech
at most in the last few hundred thousand years, maybe mucé raocently. Evolutionary forces
have little capability for sweeping changes over this tipa#s and indeed, the auditory systems of
our evolutionary neighbors, the primates, are little défe from ours. This means that much of the
biological hardware used for speech recognition evolvedfioer reasons. Many of those reasons,
including speech recognition, can be bundled under the teommunication” which itself is an
extension of “perception.” If we want to know how to desigresph recognition hardware from
bottom up, and if we believe that evolutionary biology carabéseful field guide for this kind of
problem, then we should start with the basic problems ofgmtion and communication before
tackling the complexities and intricacies involved in égoabus speech recognition.

Since one of the major difficulties of speech recognitionhis problem of the length
and variation of sounds which represent the same perceieed ov phrase, a good starting point
would be to look at the perception of acoustic events whiemauch shorter and have less variance
between individual instances. These events are catledstic transientsThey comprise the bangs,
clicks, pops, thuds, clinks, snaps, and other sounds whadkerap an important part of the daily
perception of our environment. In addition, they include tfansients from the world of biological
echolocation, sets of sound reflections encoding visuakimétion for animals such as bats and
porpoises, and the contemporary electromechanical dgotyaonar. Long before humans could
speak to one another, they were concerned with the snap afj aeling of an approaching enemy
or friend, the drip of sought-after water in the desert, dreldounds of all the vocalizing animals
to tell the difference between predator and prey. Thesebdées go way down the food chain,
and given evolutionary nature’s tendency to build more dempgystems on top of less complex
ones rather than developing new systems from scratch, trepe considered fundamental to the
problem of speech recognition and communication.

4.2 Algorithms

There exist many kinds of pattern classification algorith8@me of them work by finding
the correlation between a target pattern and a stored ppatgiattern, called theemplate Corre-
lation is one of the simplest classification schemes, botitgptually and mathematically. The
correlation is a linear system effectively reducing the elisionality of a large input space into a
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single dimension, from which a classification is determibgglacement of a threshold value. Be-
cause the classification represents a separating hypermamect classification is possible only for
linearly separable data. In addition, template correfasiohieves good results as a classifier only if
the signal matches the template at the resolution of theltgepepeatably over many independent
instances. This practically never works at the time resmiunf the raw acoustic input signal itself,
due to the complex interaction of numerous frequency comptznwith phases which may differ
from one instance to the next. A template correlation is be#ed to operate on the time scale at
which the energy envelope of individual frequency compdmenthe input changes. This implies
that first the input acoustic signal must be transformed arime-frequency description to capture
the envelope of separate frequency bands, integrated loweeduired time span. This in turn im-
plies that the template will be two-dimensional, a protatgb mapping of the input class in both
time and frequency.

As a way to perform classification of continuous speech, sushmple algorithm fails
miserably. Speech and other complex long-term signals meastietched or compacted in time
significantly from one instance to the next (even after caingushort-term energy envelopes of the
frequency bands of the input decomposition). Unless thelamcan be stretched or shrunk (known
asdynamic time warpingto match the input (or vice versa), there may be very litbereation
between a signal and its template [66]. Acoustic transjevitich are short-term events of less than
approximately a tenth of a second, do not suffer the probletime warping on the time scale of
the interesting information content of the signal, whichli®ut one or two milliseconds. A simple
correlation in the time-frequency domain followed by a shdor the maximum correlation across
all templates over the time window of the input yields acteidassification results [54].

A template correlation in the time-frequency domain hassthple general form:

M N
et = Z Zm[t—n,m]pz[n,m] (4.1)

m=1n=1
where M is the number of frequency channels of the input (havingadlyebeen processed by a
filterbank followed by rectification and smoothing, or eqlént frontend processing)y is the
maximum number of time bins in the window, is the array of input signals from the frontend
processorp, is the matrix of template pattern values for pattermis the current time, normalized
to discrete units of the sampling time. This formula produaeunning correlation, [¢] of the input
array with the template. A signal may be interpreted as belonging to clasghen the output, [¢]

exceeds a threshold, or by evaluating some function of thtowef outputs over all classes. The
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topics of how to perform the classification from the cortielatoutputs and how to determine the
optimal template for each class are discussed further itiddet. 3.6 and following.
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Figure 4.1: Template correlator, as a direct implementatb the baseline algorithm, Equa-
tion (4.1).

Figure 4.1 shows the architecture as a direct implementati¢cquation (4.1). For large
M and N, this algorithm can be expensive to execute on a DSP in tefnspaed and power
requirements, since it calls for a fixed-point or floatingapamultiply and accumulate at every
template cell, followed by delay stages implying fixed-painfloating-point storage, and additional
accumulates. In practice, workable solutions require t@tincoming signal be segmented such
that the correlation need be computed only at certain paintisne. This causes the classification
to be heavily dependent on the quality of the segmentatigorihm and reduces the robustness of
the system. For reasonably-sized problems, a full coroslgtotentially could be done in real time
with dedicated hardware. However, there are two points lleMike to make in that regard: First, in
light of the preceding discussion on biology and speechgmition, | view the problem of acoustic
transient recognition and its potential solution, tempkrrelation, as being a fundamental building
block of bottom-up methods for attacking the problem of speecognition. The fundamental
parts of the hardware may be required by higher-level pedgsardware or software to execute

many times, and should be simple, cheap, fast, power effi@ed relatively robust. DSPs are fast
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Figure 4.2: Template correlation.

and robust, but are neither simple, cheap, nor power efficacond, the template correlation as
presented is not necessarily the best solution to the probfdransient classification, and although
it has the soundness of common sense about it, there areousnariations to try which may work
as well or better, but which first must be investigated in full

Our algorithm addresses both issues. It is an approachethds litself elegantly to low-
power parallel mixed-mode computation in the form of MOSi$iator circuits operating primarily
in the subthreshold mode. It is also an approach which se$dn an intensive look at varia-
tions on the theme of template correlation and results fronsiclerations balancing the competing
characteristics of speed, power, cost, and robustness.c@msequence of looking at a number of
variations is the development of two interesting variagiohthe algorithm, the alternate one which
lends itself to efficient digital computation on dedicateatdware. In Section 4.2.1, we present
the mixed-mode algorithm. In Section 4.5 and following, wegent the digital algorithm, and
we include a summary of the variations on the correlatiorétiygn which eventually led to the
choice of each in Section 4.3.4. In the following discussie present our algorithm as a set
of incremental modifications to Equation (4.1), which welwéffer to as the “baseline algorithm.”
Software simulations (see Section 4.3) show the baselg@itim to be both accurate and robust.
Here we are primarily concerned with modifications whichderthe template correlation easier to
compute, faster, cheaper, or more power-efficient, eithgeneral or with respect to a specific type
of hardware implementation.

We summarize the steps taken as follows:
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1. First, we normalize the input.

2. Next, we transform the input and template into a zero-nmepresentation by using the pair-
wise difference of channels with respect to the original.

3. We replace the template values with binary values.

4. For considerations of simplified analog hardware, we catenthe differencing operation

between channels to the output.

4.2.1 Simplifying The Correlation Equation

We assume that the template correlation system receivagpah vrectory which is the
two-dimensional output of a filterbank system, as describetktail in Chapter 3. liv is a live or
recorded acoustic signal (see Figure 3.1), the fronteretliink processor splits it inthf band-
passed frequency bands, after which the short-term enexgyapey for each band is estimated by
rectification and smoothing.

Ouir first step, normalization, is essential for the stepstwfollow, but it is also motivated
by a need for some type of gain control to increase systenstobss. Consequently, the optimal
template values must be computed using the normalizedrridte the original inputs during train-

ing of the templates for each class. We normalize the systpats by thd_-1 normfunction

z[t,m] = %, 4.2)
0+ ylt, k]
k=1

where we have simplified the presentation of the algorithnmagsuming a dimensionless output
normalized relative to unity. The constant vallsuppresses noise during quiet intervals in the
input. If this value is not added into the system, then duiimigrvals of silence at the input, all
channels will be amplified until the random noise on the inmatches unity value. While one
may correctly assume that amplified noise is not likely taelate with the template any better
than silence (zeros) itself, white or (in particular) babhbise does have a non-zero probability
of generating false alarm errors (see Section 4.3.7) iff larger than the input, then the input
will remain at a low level and not be amplified significantlg atakes most of the amplification
instead. This helps reduce the false alarm rate of the sygtarticularly if the noise level at the
input is well known and the signal-to-noise ratio is reasydarge. However, note that the only
consequence of a low signal-to-noise ratio is an elevatisg faarm rate: The system is robust
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and degrades gracefully rather than catastrophically initteasing noise (see Section 4.3.7). The
effect normalization has on an example acoustic transgeshown in Figure 4.3, which is the
normalization step applied to the rectified and smootheeriiiink outputs from the example of
Figure 3.4.
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Figure 4.3: Filterbank output after applying an L-1 norrpation across all channels. A single
channel has been added to the system (top trace), contaiv@rmgsult of a constant value less the
instantaneous sum of the remaining channel values.

While automatic gain control and reduced false alarm raka beneficial consequence of
normalization, thenotivationbehind the particular choice of L-1 normalization is thas iessential
for significant simplification of the pattern classifier aligfom [55] as discussed below.

The hardware complexity of the correlation computatiorei®dmined by the multiply-ac-
cumulate function performed at each template value. Becdigital multiplication is a particularly
complicated area and time consuming function, it shouldrmediately apparent that the circuit
complexity can be greatly reduced if it is possible to enctidetemplate values as a single bit
each. While this consideration leads to efficient digitapiementations of the correlator, it is an

especially efficient form for an analog, current-mode immatation. It remains to be proved that
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acceptable classification performance is possible with auninimal representation of the template,
which is presented in Section 4.3.2.

To maintain the system accuracy using single-bit templatesiecessary to have a crite-
rion by which a choice may be made as to whether a particulapltge bit should be-1 or —1. A
natural choice can be made if the input (on which the temjsatained) has a zero-mean represen-
tation. Unfortunately, the normalized output of the froxtddilterbank processor (Figure 4.3) is a
strictly positive-valued representation. A further tfamsation is required to produce a zero-mean
representation, for which the most convenient method ferdifitiation (or differencing, in discrete
space). Numerous options are available, including difféaéon in time, computing pairwise dif-
ferences between channels, computing a center-surroank{gnes referred to as a “Mexican hat”)
function, or some weighted combination of time sample aaddency channel differences. Simu-
lations have proven that the calculation of pairwise chhdifierences has by far the best tradeoff
in simplicity and robustness. Time differentiation is netedfective for acoustic transient classifi-
cation, but as it has an especially efficient implementadioth may be useful for certain recognition
tasks, the algorithm and architecture is included in Appefid

We calculate the pairwise difference between channels efrthut and compare it to
the corresponding difference between channels of the wmpiThe effect of this step upon the
recognition task is negligible, as it amounts to having heihput through a spatial highpass filter,
subtracting off what amounts to a constant factor. The tataplare static values, so the difference
between channels of each template replaces the origins~al

Now that the (transformed) input and template values are-ze¥an over time, we may
replace the template values by thsign, indicating whether the energy in a particular channel is

expected to be larger or smaller than its neighbor. Thuséheformula is written:

Z Z Z'[t —n,m]p',[n,m] (4.3)

n=1m=1
where
'[t,m] = (z[t,m]— z[t,m —1]) (4.4)
p',[n,m] = sign(p.[n,m]— p,[n,m —1]). (4.5)

Through simulations, we have shown that binarization oftémeplate has a negligible effect on
classification performance [56]. Interestingly, this ftesloes not hold for a binary input and a

continuous-valued template.
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Figure 4.4: Template correlator with pipelined architeetiand multiplexors replacing the
multipliers.

Figure 4.4 shows an architecture implementing EquatioB) (directly. In addition to
minimizing die area required for storing template weigbtsary template values reduce the corre-
lation multiplication to a multiplexing function. Howevex multiplication by—1 is still required
in Figure 4.4. While the negation operator is not nearly asglcated as a multiplier and can be
handled efficiently by various tricks, some circuitry ovesld is inevitable.

A further simplification of the architecture is also showrthie same figure. This simpli-
fication involves transforming the correlation into a piped process. In the pipelined architecture,
input z[¢t] is multiplied by all template values simultaneously and a$ nsed again: it does not
require any memory for the input vector. Instead, the systwrespartial column sumg$rom the
inner loop evaluation, which we denajf:, t]. The partial column sums require a single shift-and-
accumulate register. The correlation output at time the value at the end (positiaN) of the

register, delayed by one time step:

M
ant] = qn—1Lt—1+ Y @lt,mlplnm]  Vn#l (4.6)

m=1
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M:

q[l,t] = o'[t,m]p’,[1,m] 4.7)
m=1

Cz[t] = q[Nvt_l] (48)

A short proof that the pipelined architecture is equivaterthe original architecture can
be found in Appendix C, Section C.1. The main difference leetwFigure 4.1 (the original, non-
pipelined architecture) and subsequent figures (4.4, 4 it the template is reversed from left to
right. In the non-pipelined architecture, the oldest ingettorz’[t — n,m] is closest to the output,
having passed througN delays while propagating from left to right. In the pipeliharchitecture,
the most recentnput vectorz'[t, m] is closest to the output, being the last state to be accuetllat
on the delay-accumulate register before the output is read.
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Figure 4.5: Values in the pipelined delay registers in theatation algorithm simulation.

For all-digital ATP systems, the algorithm of Equations¢4.8) represent the most effi-
cient architecture. For digital systems, the signed asticrfor the multiplications can be handled
easily by XOR logic, so that the overhead is minimal. The fguadrant multiplication is still
problematic for analog implementations, however.
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The fact that the input has been normalized by the L-1 nomatidin function allows a fur-
ther simplification of the architecture which again doesmetsurably affect system performance.
This step is to make the template values birfary| rather than binary—1, 1]. In the case of0, 1)
encoding, the problematiel gain factor disappears and the multiplexing function mayeokiced
to a simple switch. This results in a simplified floorplan fathb analog and digital implementa-
tions, although the greatest gain is realized for currentdienanalog systems, where each switch
can be a single MOS transistor and the accumulation can mmgdished by simple addition of

currents onto a single wire. Figure 4.6 shows this architect
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Figure 4.6: Template correlator with [0,1] encoding of tdatg values.

Still, the inputz’ has both positive and negative values, so even though thelaion
has been reduced to a simple array of switches, there reh@mpsoblem of bidirectional currents.
We must duplicate (mirror) the input current in each tengplzll, and mirroring of bidirectional
currents is much more complicated than mirroring of uniomal currents, which requires only
that a single gate voltage be distributed to the array todmsformed back into the input at each cell
by a single matched transistor. The best choice in this cagedvoid the problem by commuting
the channel differencing operation to the output. This ireguthat the differenced input [¢, m]
be expanded and multiplied through by the template separatbere are few good architectural

choices; the best one relies on the accuracy of the accuevidday register and assumes that two

117



registers can be built that will be reasonably well-match@all these two registekg andg,:

NE

a1 [nvt] = Q1[n T 1] + :v[t,m] plz[nvm] vn 7é 1 (49)
m=1
M
@[n,t] = q@nh-1,t—1]+ Z z[t,m —1]p',[n,m] Vn #1 (4.10)
. m=1
q[l,t] = Z z[t,m]p',[1,m] (4.11)
m]\zl
QZ[l, t] = Z .T[t7 m — 1] plz[lv m] (412)
m=1

Thus, the correlation output becomes:
Cz[t] = Q1[N7t_1]_QZ[N7t_1] (413)

Note that in this case the inpuft, m| which comes straight from the frontend filterbank
processing and hast been transformed by a differencing operation, is multipti@ectly with the
template value',[n, m], which been transformed.

One distinct advantage of commuting the difference opmmat that only one difference
needs to be evaluated rather thiahseparate differences, one for each channel, and so while we
must be concerned with how well matched the two delay-actatmuegisters are, and how well
matched the input mirroring transistors are, we do not hawearry about matching and accuracy
of the channel difference calculation across all the chiannilost importantly, since the inputs
x are rectified and therefore strictly positive, the produgt wherep’ is binary [0, 1], is always
nonnegative and equals eitheor zero. The implied multiplication is in the positive quadt only,
which allows us to conveniently implement the entire catieh as an array of single-transistor
current sources and single-transistor current switchiee.oerhead required by splitting the corre-
lation into two parts for the delay-accumulate registgrandgs is not as large as one might expect
(see Section 4.4.1 and following). The resulting high dgriayout of templates enables an entire
acoustic pattern recognition system to be placed on a sihigen conventional CMOS technology.
A typical application consisting of an analog current-madeustic frontend processor and 1024-bit
templates {/ = 16, N = 64) to classify a dozen different transient sounds can &tdmmx 6 mm
die area in a 1.Am technology.

Our choice of an analog implementation stems from the ghititmake such a system
compact and extremely power-efficient. With a separateetaior circuit for each template, the
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system is fully parallel, and only about as complex as a RAMyarFigure 4.7 shows a diagram
of the system as presented, for a current-mode implementafihe correlator accepts inputs in
the form of unidirectional currents, one for each channelThe input current is mirrored simul-
taneously in all cells across the template array, shown yenrltage controlled current sources.
Each template cell contains a single bit controlling thetipléxer, a dual-pole, single-throw switch
which adds either zero current or the copy of the input canethe sum. Rather than compute the
channel difference directly, the positive and negativéspare kept separate. Inputs from frequency
channels: and(n + 1) are kept separate, each added to its own partial column senatid accu-
mulated over time on two different delay-accumulate linBse channel difference computation is

deferred, occurring at the output.
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Figure 4.7: Block diagram of the temporal current correlato

4.3 Simulations

In the previous sections of this chapter, we introduced gordhm for classifying acous-
tic transient signals using template correlation, and sibthe development of the algorithm for
efficient and accurate operation under the constraintseoptbposed analog VLSI hardware. In

the course of both algorithm and hardware development, we lgd to reevaluate the algorithm in

119



the light of the possibilities and the limitations of the sba hardware. This and the following sec-
tions specifically addresses improvements in classificgt&rformance achievable by algorithmic
modifications, tailored to the constraints and strengthth@implementation medium.

4.3.1 The Hopkins Electronic Ear (HEEAR) Processor

To train and evaluate the classification system, we acqairgatabase of approximately
twenty recorded samples of each of ten different classeswariyday” transients using materials
obtained from a typical office/laboratory environment a time the recordings were made [54].
The ten classes are listed in Table 4.1.
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Figure 4.8: Example transient recorded data.

The complete recording of the transients was played baokaimtata acquisition system,
sampled at 32 kHz, and saved to disk. Then the sampled stresnprocessed through a system
based around the analog VLBEEARCchip [53]. The HEEAR processor is an electronic cochlear
model, a modification and extension of the original desigesented irAnalog VLSI and Neural
System§l]. The HEEAR chip is like the original electronic cochleethat it models the mechanics
of the mammalian basilar membrane using a long cascade paks\filters, with outputs tapped

along the length of the cascade. It differs in that it makesafdirst-order lowpass filters along the
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Bar A heavy metal bar

Book  Sound of a book being closed, loudly

Can An empty aluminum can hit against a desk

Dink A lightweight metal bar

Door  Sound of a door closing, with the latch snapping intea@la
Finger Finger snap

Hand Handclap

Tub A plastic tub

Mallet A wooden mallet

Shelf  Sound of knocking on a wooden bookshelf

Table 4.1: Classes and descriptions of the recorded trardagaset.

cascade rather than second-order filters with gain. Bedaedeps then do not have bandpass-like
characteristics, each tap is followed by a bandpass filter.

The cascade of filters begins with a high-frequency cutodf @ach successive stage has
a progressively lower cutoff frequency. Consequently,stopband attenuations get multiplied and
after a few stages in the cascade, the filter transfer fumaamuires an extremely large slope for
the rolloff into the stopband. The use of first-order filteasher than resonant filters increases
the stability of the signal as it passes along the cascadkhealps control mismatch between the
stages. The bandpass-filtered output of the taps compiiisyadne channel filterbank with center
frequencies spaced on a logarithmic frequency scale froorH¥Oto 6 kHz. The filter is more or
less constanf) with Q = 3.5 at the higher frequencies but drops to unity resonance dowest
frequencies, in keeping with the physical model of the matiamaochlear frequency response.

The HEEAR chip extends the original electronic cochlea bydeting the function of
the inner hair cells surrounding the mammalian cochlea. Aurpose of the hair cells is signal
rectification and some nonlinear gain control. These hdliczeuits were bypassed for the acoustic
transient recordings. The HEEAR response to the recordiedetavas sampled and saved to disk

along with the original recording.

4.3.2 Simulating the Acoustic Transient Baseline Algorithm

The acoustic transient processor algorithm begins witlitadigpost-processing of the
HEEAR frontend filterbank data on a computer. The sample® fiiee thirty-one output chan-
nels of the HEEAR processor are rectified, smoothed with gé®s filter function using a 1 ms
time constant, and then decimated from 32 kHz to 1 kHz. Theosinedl, decimated outputs are
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Figure 4.9: Example HEEAR-processed transients.

normalized with the L-1 norm function (Equation (4.2)).
The valuée itself can be normalized and used as another output channel:
0
M 7

0+ ylt, k]

k=1

oft, M +1] = (4.14)

For typical values o), the additional output[t, M +1] inversely follows the energy envelope of the
input signal, which is the sum of the individual channel aiigp It becomes maximum during the
periods of silence and minimum during presentation of asieart event. This extra output can be
used to detect onsets of transients, but is not used in thelawon computation of Equation (4.9—
4.12).

The next stage of processing involved automatic segmenfitige recordings into indi-
vidual transient examples. The automatic segmenting ithgorfinds transient boundaries using
the normalized channel[¢t, M + 1]. Quantizing this signal with a hard-limiting threshold étion
produces a noisy estimate of the segment, which is then smdaind thresholded again to produce
a clean segmentation signal lasting the duration of thesigah The smoothing and thresholding
step is performed twice in parallel, once with a smoothingetconstant of 10 ms and once with a
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smoothing time constant of 1 ms, and the final results condbivieh an OR logic function. The
longer time constant ensures that all noise is eliminatad the segment estimate, while the shorter
time constant acts to detect the transient onset with Iday §b].

Template valuep, are learned automatically by aligning all examples of thaesalass
in the training set using the result of the automatic segareand averaging the values together.
The template size is set to be the same size as the maximwgtilsegmented example, and the
remaining examples are padded out to match.

Dink Clap

Tub Can

Figure 4.10: Example templates learned by the ATP algorithm

We evaluated the accuracy of the system with a leave-oneross-validation loop in
which we train the system on all of the database except ona@ezof one class, then test on that
remaining example, repeating the test for each of the 22@pbess in the database. The baseline
algorithm gives a classification accuracy of 96.4%. TakPesthows the resulting confusion matrix
for the cross-validation loop.

4.3.3 Optimizing Template Correlation Algorithms for Acoustic Transient Classifi-
cation

A major consideration for hardware implementations (bagital and analog) is the mem-
ory storage required by the templates, one of which is requor each class. Minimal storage space
in terms of bits per template is practical only if the algwomit can be proved to perform acceptably
well under decreased levels of quantization of the templaliges.

At one bit per template location.¢., M x N bits per template), the complexity of the
hardware is greatly simplified, but it is no longer obviousatvimethod is best to use for learning
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Table 4.2: Confusion matrix for leave-one-out cross-alizh loop, using the baseline algorithm.

frequency(m)

time bin(n)

Figure 4.11: Example of a real-valued template.

frequency(m)

time(t) ortime bin(n)

Figure 4.12: The same template reduced to trinary values.

124



frequency(m)

time(t) ortime bin(n)

Figure 4.13: The same template reduced to binary values.

the template values, or for calculating the per-class galime choice of the method is guided by
knowledge about the acoustic transients themselves, amalagion to evaluate its effect on the
accuracy of a typical classification task.

4.3.4 Simulations of different zero-mean representations

One bit per template value is a desirable goal, but realifirfggoal requires reevaluating
the original correlation equation. The input values to beadated represent band-limited energy
spectra, and range from zero to some maximum determinedely-tnormalization. To determine
the value of a template bit, the averaged value over all elesngf the class in the training set
must be compared to a threshold (which itself must be detsu)j or else the input itself must
be transformed into a form with zero average mean value.drater method, the template value
is determined by the sign of the transformed input, averanyed all examples of the class in the
training set.

The obvious transformations of the input which provide a@eof zero-mean signals to
the correlator are the time derivative of each input charaned the difference between neighbor-
ing channels. Certain variations of these are possibld) asa center-surround computation of
channel differences, and zero-mean combinations of tirdecaannel differences. While there is
evidence that center-surround mechanisms are common tohielogical signal processing of var-
ious sensory modalities in the brain, including procesgintpe mammalian auditory cortex [70],
time derivatives of the input are also plausible in light loé short time base of acoustic transient

events. Indeed, there is no reason to assamegori that channel differences are even meaningful
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on the time scale of transients.

Table 4.3: Simulation results with different architectire

Method Both | Binary | Both | Binary(1,—1) | Binary(1,0)
Cont. Input | Binary Template Template

One-to-One 96.40% — — — —
Time Difference | 85.59% /| 65.32%| 59.46% 82.43% 81.98%
Channel Difference| 90.54% | 53.60% | 95.05% 94.59% 94.14%
Center-Surround || 92.79% | 53.60% | 95.05% 92.34% 92.34%

Table 4.3 shows simulation results, where classificatiaui@cy on the cross-validation
test is given for different combinations of continuoustra and binary inputs and templates, and
different zero-mean transformations of the input. Theessaweral significant points to the results of
these classification tasks. The firstis to note that in sjfitleecfact that acoustic transient events are
short-term and the time steps between the bins in the teengdabw as 2 ms, using time differences
between samples does not yield reliable classification weitter the input or the template or both
is reduced to binary form. However, reliability remains thigghen the correlation is performed
using channel differences. The implication is that everstiwtest transient events have stable and
reliable structure in the frequency domain, a somewhatrisimg conclusion given the impulsive

nature of most transients.

Event || Bar | Book | Can | Dink | Door | Finger| Hand | Mallet | Shelf | Tub
Bar 0 0 0 1 0 0 0 0 0
Book || O 0 0| O 0 0 0 0 | 1
Can || 1 | © 0 4 0 0 0 1|0
Dink || 1 0 0 0 0 1 0 0 0
Door | O | O | O | O 0 0 0 0o | o0
Finger| O 0 0| o0 0 0 0 0 0
Hand || 0 | 0 | 0| 0 | © 3 0 0o | o0
Mallet | 0 0 0| o0 0 0 2 0 0
Shelf|| 0 | o | 0| O 1 0 0 0 0
Tub | O 0 0| 0 0 0 0 0 0

Table 4.4: Confusion matrix for leave-one-out cross-\alh loop, using binaryl, 0) templates
and channel differencing.

Another interesting point is that we observe no significaffexence between the use
of pairwise channel differences and the more complicatedecesurround mechanism (twice the
channel value minus the value of the two neighboring chajndlhe slight decrease in accuracy
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for the center-surround in some instances is most likelyahlg to the fact that one less channel
contributes information to the correlator than in the p&@eachannel difference computation. When
accuracy is constant, a hardware implementation will abyagfer the simpler mechanism.

Very little difference in accuracy is seen between the usenfiary(1, —1) representation
and a binary(1, 0) representation, in spite of the fact that all zero-valuedpiate positions do not
contribute to the correlation output. This lack of diffecenis a result of the choice of the L-1
normalization across the input vector, which ensures tiapart of the correlation due to positive
template values is roughly the same magnitude as that dueggttive template values, leading to
a redundant representation which can be removed withcettaffy classification results. In analog
hardware, particularly current-mode circuits, {ie0) template representation is much simpler to
implement.

Time differencing of the input can be efficiently realizedaimalog hardware by commut-
ing the time-difference calculation to the end of the catieh computation and implementing it
with a simple switched capacitor circuit. Taking differesdetween input channel values, on the
other hand, is no so easily reduced to a simple hardware féorfind a reasonable solution, we
simulated a number of different combinations of channdedihcing and binarization. Table 4.5
shows a few examples. The first row is our standard implertientaf channel differences using bi-
nary(1,0) templates and continuous-valued input. The drawback sftigithod in analog hardware
is the matching between negative and positive parts of thelation sum. We found two ways to
avoid this problem without greatly compromising the sysgarmformance: The first, shown in the
second row of Table 4.5 is to add to the correlation sum orilygfchannel difference is positive and
the template value is 1 (one-quadrant multiplication). #eo (shown in the last row) is to add the
maximum of each pair of channels if the template value is i¢clvis preferable in that it uses the
input values directly and does not require computing a idifiee at all. Unfortunately, it also adds
a large component to the output which is related only to tked energy of the input and therefore
is common to all class outputs, reducing the dynamic rangleeoystem.

Table 4.5: Simulation results for different methods of commry channel differences

method accuracy
channel difference | 94.14%
one-quadrant multiply 92.34%
maximum channel | 93.69%
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4.3.5 High-Level Simulations of ATP Mixed-Mode VLSI Hardware

We independently confirmed the results of the softwaresttiaing a separate system more
accurately representing the hardware being developethéohTP project. Primarily, this involved
a full high-level simulation of the log-domain parallel lagrass filterbank to confirm that results of
the classification algorithm were independent of the spefgfitures of the frontend system used; in
other words, that the performance was not specifically tirtkkethe behavior of the HEEAR chip in
some way that would render the algorithm less accurate gordposed parallel bandpass filterbank
system.

To train and evaluate the system, we used the same databesmafed samples of 10
different classes of “everyday” transients described i pheceding section. We simulated the
frontend filterbank described in Chapter 3, a sixteen chdiltezbank having & of 5.0 and with
center frequencies spaced on a mel scale from 100Hz to 4500He bandpass filtering was
followed by rectification and smoothing with a lowpass fiftanction with a cutoff frequency scaled
logarithmically across channels, from 60 Hz to 600 Hz. Thanctel output data were decimated to
a 500 Hz rate (2 ms period). Half of the database was useditahesystem, and half used to test.

In general, performance on classification tasks was sirtglahat of the system using
HEEAR chip outputs, in spite of the fact that the time periddamples was doubled, the hum-
ber of channels cut in half, and the number of training exasplso cut in half. Slight gains in
performance on certain tasks are most likely due to the eledigital filtering of the recorded data.

4.3.6 Optimization of the classifier using per-class gains

The baseline algorithm simulation reported in Appendix Eines a correlation value

equal to the dot product divided by the number of time samiplése template. Thus:

M N,
c:lt] = K, Z Zx[t_nvm]pz[nvm] (4.15)
m=1n=1
1
K = o (4.16)

This slight difference in the correlation equation was matuded in Equation (4.1) due to the fact
that the VLSI hardware has a fixed number of time samples pepléde IV, so there is no point
in dividing each result by a constant value. The point of themalization, however, is obvious
for the baseline algorithm, considering that some acoustitsient classes have inherently more
energy than others. If the outputs for each template are amdsolely on their correlation values,
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certain classes will have a tendency to win unconditionaBince in general, classes which have
longer timespans contain more overall energy, dividingdbeelation result by the timespan of
the template is a sensible way to normalize. However, it iesnan ad hoc solution. The proper
treatment is presented below. It is fundamental to the apditions described in Section 4.2.1.

The template has been generated by averaging all examptls ofass in the training
set. Therefore the template can be considered to représgmtotypicalclass example. The cor-
relation of the template with itself (autocorrelation) risfere represents a prototypical correlation
for that class with its own template, under condition of ot alignment, for which we expect the
correlation result to be maximum. If all correlation resuibr templatez are normalized by the
autocorrelation of template, then all correlations should have an average maximum \afloee,
and correlation outputs from different templates may bepemed directly to one another.

The gain factorK, is computed from the template values using the autocoioal&inc-

tion:

M N,
K, = \J > > p.ln,m]* (4.17)

m=1n=1

The per-class gain valuds, using the autocorrelation normalization are optimal far th
baseline algorithm. Autocorrelation applied imary templates (when the template value is as-
sumed to be either1 or —1) yields K, = M N,, which is the same value for all classesvhen
the template is a fixed sizéV{ = N Vz). This indicates that autocorrelation tells us nothing in-
teresting about per-class gains other than that the optiasad is that of no normalization. Unity
gain is assumed in all the simulations of the previous sectad the assumption is upheld by the
excellent system accuracy in simulation where no gainsvere applied at the outputs.

A careful evaluation of errors from several runs indicatied possibility that different
gains on each channel potentially could improve recogmitites. That is, if errors are histogrammed
by type (class: expected, incorrectly classified as clasor all combinations ofi £ b), a nonuni-
form distribution results. Simple experiments wiffy gain values tweaked by hand proved that
reducing the gain of classes which had a greater tendenoy ttidisen in error could cause error
rates to drop and the error distribution to be more uniform.

The apparent contradiction can be resolved by realizingttieautocorrelation of the
binary template with itself only makes sense if the inputse &inary. When inputs are continuous-
valued, then the correct computation is not the templatecautelation, but the correlation of the

template against the averaged examples of the class, wi@d¢hevalues obtained for the template
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just prior to quantizing. Thus:

M N,
K, = J > o n,m]p [n,m] (4.18)
m=1n=1
p",[n,m] = p,[n,m]—p.[n,m-—1] (4.19)
p'.n,m] = sign(p”,[n, m]) (4.20)

wherep,[n, m] are the same template values used for the template in théneagkyorithm Equa-
tion (4.1). This formula results in differeri(, values when the inputs are continuous-valued and
the templates are binary-valued.

There is yet another consideration to be made in determivaiiges K,. An alternate
strategy is based on the realization that while normabratif all template autocorrelations is im-
portant, there is also valuable information to be gainedhftbe cross-correlationsbetween class
templates or between class templates and class exampégaseas used in Equation (4.20). The
cross-correlation of class averagl, with templatep’; yields the expected average output value
when an input example of clagds correlated against the template for classClearly, what we
want is to maximize the expression

Ki Z Z p”i[nam] p,i[nam] (421)

while at the same time minimizing the expressions

M N
K >SN plingmlpln,m] Vi £ (4.22)

m=1n=1

We do this by inventing an error expression by which we cauet@ the state of the
condition above, and then maximizing or minimizing the egsion with respect t&; and K ;.
Note that for all of the following equations, we will use thelve N to denote the width of the
template. This assumes either that all templates have the gadth V or that the shorter of the
two expressions is padded to match the other.

We start with a2 x Z matrix of cross-correlations, denotéd whereZ is the total number
of classes:

M N
Ciy =K; Y > plilnm]pln,m] i=1...Z,j=1...Z (4.23)

m=1n=1
Matrix elementC;; is the expected value for the correlation between a typicaigle of a transient

input< and the template for its own clags Therefore we wish to maximize each diagonal element
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Cj; with respect to all other elements in the same colu@if, Since the templates are fixed by the
averaging algorithm we used to create them, the only dedreeeslom available for minimizing or
maximizing anything is the premultiplication coefficiedt§ on each template, one per row ©f
The per-class gain mechanism is easily transferred to thleguor digital hardware domain.

In the case of both continuous-valued templates and inpugpéimal solution can be
directly evaluated and yields the autocorrelation nornadilon of Equation (4.17). However, for all
binary forms of the template and/or input, direct evaluai®impossible and the solution must be
found by choosing an error functiagh to minimize or maximize. The error function must assign
a large error to any off-diagonal element in a column thatragghes or exceeds the diagonal ele-
ment in that column, but must not force the cross-corratatim arbitrarily low negative values. A
minimizing function that fits this description is

E =Y exp(KiCi; — K;Cj;). (4.24)
Ji#d
This function unfortunately has no closed-form solution fiee coefficientsk;, which must be
determined numerically using Newton-Raphson or some dr@tive method. A software routine
which performs the optimization is printed in Appendix F.

Improvements in the recognition rates of the classificatask using this optimization
of per-class gains is shown in Table 4.6, where we have ceresidonly the case of inputs and
templates encoding channel differences. Although theébdatis small, the gains of 2 to 4% for the
guantized cases are significant, particularly as they rethdehistogram of errors more uniform.

Table 4.6: System accuracy with and without per-class nlizatepn.

binarization accuracy, optimized accuracy, non-optimized
none 100% 100%

template only 93% 91%

template & input| 95% 91%

4.3.7 System Robustness

We performed several additional experiments in additiothése covered in the previous
sections. One of these was an evaluation of recognitionracgwas a function of the template
length NV (number of time bins), to determine what is a proper sizelertemplates. The result is
shown in Figure 4.14. This curve reaches a reliable maximuabaut 50 time bins, from which
our chosen size for the hardware implementation of 64 binsiges a safe margin of error (as
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well as a convenient power of 2 for addressing the memoryyeyer, it is interesting to note that
recognition accuracy does not drop to that of random chantieanly two time bins are used (a
total of 64 bits per template), and accuracy is nearly 50% witly 3 time bins (a total of 96 bits
per template).
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Figure 4.14: Effect of decreasing the number of time-bins.

Examining the effect of a different number of frequency cieds is a difficult process due
to the requirement of regenerating the input data for eat;tsisee the filter placement and band-
width must change when the number of filter channels chand@sever, we did make one critical
measurement which was to note the difference between apegait32 channels (the original simu-
lations)vs. 16 channels (the size of the VLSI hardware) with all otheapsaters of the recognition
task fixed. The recognition task which maintained an acqun64.1% under 32 channels dropped
only slightly to 91.9% when using only 16 channels. In bothuinsets, the) of the filters was
adjusted to maintain similar overlap between adjacentdil@nd the frequency span covered by all
filters in the filterbank was approximately the same.

We made one evaluation of the robustness of the algorithrhdrmptesence of noise by
introducing additional white noise at the correlator irgputhe graph of Figure 4.15 shows that ac-
curacy remains high until the signal-to-noise ratio is tdy@ dB, after which it degrades gracefully
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rather than catastrophically with additional noise.
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Figure 4.15: Effect of white noise added to the correlatputs.

An interesting question to ask about the L-1 normalizatibtha frontend is how the
normalization valuef]) affects the classification performance. If this channanstted, then the
total instantaneous value of all outputs must equal the saoie, even during periods of silence,
in which low-level noise gets amplified. The nominal valueha$ channel was chosen to match the
levels of noise in the transient recordings. For one of tisesaf Table 4.3 (real input, binafy, 0)
template, channel differencing at the input), we tried twioeo tests, one with the normalization
constant doubled, and one with it omitted (zero). Doublimgriormalization constant had no effect
on the error rate, while omitting it caused the accuracy tpdnly from 94.1% to 92.3%. The
conclusion is that for large templates, random noise hawatobability of producing a spurious
positive correlation that would be classified as a transiéné classification algorithm is not largely
dependent on input signal normalization.

4.3.8 Research Directions

The optimizations of the correlation algorithm we have présd are by no means exhaus-
tive; in fact, they represent only the tip of the iceberg. tA# optimization strategies considered here
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have been based upon the assumption that the template aativesl at by aligning and averaging
all class examples is immutable. By considering templateegfixed, normalization becomes a
relatively simple problem. We have one degree of freedomvematan be certain that we have
found an optimal solution under these constraints.

The acquisition of templates by aligning and averaging aingples of a class is a rea-
sonable and simple method based on the fact that a funcaoi’orrelation peaks at the position
of exact alignment. However, it does not guarantee thatebalting template values are in any
way “optimal” over all time and against all competing clasguts. It does not consider correlation
peaks which might occur away from the position of alignmenthe templates, and it does not
take into account any information about competing clasBefeasing the constraint of fixed tem-
plates expands the optimization problem into so many difnaeghat finding a solution becomes
a formidable task. Some strategies toward this goal areisksd in Chapter 5.

4.3.9 Remarks

Starting from a template correlation architecture for aticuransient classification tar-
geted for high-density, low-power analog VLSI implemeiatat we have investigated several vari-
ants on the correlation algorithms, accounting for thengfifes and constraints of the VLSI imple-
mentation medium while maintaining acceptable classiiogberformance.

Reduction of input and templates to binary form does notifsaggmtly affect performance,
as long as they are transformed to encode the differenceigintm@ing channels of the original
filterbank frontend outputs. This suggests that acoustitstent classification is not only amenable
to implementation in simple analog hardware, but also isaaably simple digital hardware.

In looking for zero-mean representations of the input cdibfgawith a binary template,
we found that computing pairwise differences between chlgrngives a more robust representation
than a time-differential form, as was reported previously55]. We have found that computing
a center-surround function of the inputs yields virtualy same results as taking pairwise chan-
nel differences. Where hardware implementation is the,gbal pairwise difference function is
preferred due to its greater simplicity.

We have additionally shown that cross-correlations betvadigned, averaged inputs and
templates can be used with an iterative method to solve timapgain coefficients per class output,
which yield better classification performance. This is ahndtwhich can be applied in general to
all template correlation systems.
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4.4 Hardware Implementation of the Acoustic Transient Processor

We now turn to the problem of creating the VLSI circuits whigtplement the algorithms
presented in the preceding sections. Much of the algoritbweldpment took into consideration the
problem of efficient mixed-mode VLSI design.

Our approach lends itself elegantly to low-power, masgipalrallel analog computation
in the form of MOS transistor circuits operating primarity the subthreshold mode. Our choice
of an analog implementation stems from the ability to mal@hsausystem compact and extremely
power-efficient. Using a separate correlator circuit forthetemplate, the system is fully parallel,

and only about as complex as a RAM array.

4.4.1 Current-switching Memory Array

To implement the summation overin Equations (4.9-4.12), we utilize the simplest form
of summation available to analog circuits, that of summingents onto a single wire. Each cell
in the array contains a conventional static memory circuitisg the single-bit template value, a
pMOS transistor switch with the template bit controlling date, and a pMOS transistor current
source which generates a copy of the input current for now The switch allows or disallows
the copied current to be added to the total current for columiBach array position is individually
addressable for programming (so-called “random accessiljdw simple chip-in-the-loop learning
under computer control. Unlike a true RAM array, there is med (other than diagnostic) to be
able to read the value of the memory cell. In a way, these asliswrite-only,” although the value
of each cell can be determined indirectly through the sysigmut and output.

Figure 4.16 shows the layout of the template array and thwitiused at each template
cell. The single-bit template value is stored in a standancgsistor SRAM cell, made of back-
to-back inverters and two nMOS programming transistorsieoted to a row-programming enable
line Write(m) running horizontally across the template array and twcsliioe the inputhit(n) and
bit(n) values. The programming transistors and correspondirg atat control lines appear gray
in the figure. The remainder of the core cell represents thedfuhe correlator processing, which
has been somewhat complicated by the requirements of thmehdifferencing operation. The
algorithm requires two switches per template memory locatfrn, m), one (Ms) which switches
the input current of rown to the first (positive) delay line, and on&7) which switches the input
current of rowmn — 1 to the second (negative) delay line. The positive and negyatrts share the
same wire carrying the current down to the delay lines by-timutiplexing based on the signél.
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Two additional switchesN/, and M;) determine the phase at the memory cell. On the delay lines,
the same signab determines which delay line performs the accumulationyf€igt.20).

Through the various optimizations to the algorithm desatin Section 4.2.1, we have
reduced the array core cell to five transistors. It could beanaith as few as three transistors
by having two metal lines carrying the positive and negagpigets of the column sum currents to
the two delay lines at the bottom of the array rather thanispahe one column line as shown
in the figure. However, for the two-metal layer, two-poly éayprocess we used to fabricate the
circuit, the five-transistor cell is actually more compauart the three-transistor cell due to the
design rule constraints on the separation of metal lined tla@ fact that the four transistors used
as switches/, throughMs) can be minimum-size devicésBy contrast, the input current mirror
transistorM; shouldnotbe minimum size, as transistor area is inversely relateéviwd mismatch.
Transistor and core cell sizes are reported in Table 4.7 eD&ons are shown in lambda) where

the fabrication process parameper 0.6um.

bit (1) py(n,m-1) Bit (n)

Templatep
x(0t) x(m,f) =
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g !
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Igl(l )I' mzl ( )pb(lecb )_’ - e
elay line ena . >:z)— outputc,(t)
o(nt) = mZx(m,t)p’Z(n,m-l) -

Delay line 2  enable®

Figure 4.16: Block diagram of the temporal current coralat

The current-mode correlator cell is an ideal circuit amttiire for a dynamic, rather than
static, memory. Figure 4.17 shows how a dynamic memory eall e constructed (although it
does not show the sensing circuit, one per column, used &rdete the value of the memory
during refresh and set thet(n) line accordingly). The switches in the core cell{ through M)

2This is consistent with the usual rule of thumb about the etgakfraction of a digital circuit which will be occupied
by routing (metal) layerss. the space occupied by the gates (transistors) themselves.
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M, W/L (\) = 16/8
core cell W/L (\) = 28/86
16x64 array W/L (\) =1796/1380

Table 4.7: Transistor, cell, and array sizes corresponuirgigure 4.16.

are positioned like cascode transistors in relation to tiveeat source /;), and will act as such

over a large range of voltages. The implications are:

1. The dynamic circuit should ensure that the dynamic meroapacitor nodet(n,m)) tends
to move toward the positive power supplyf in response to charge leakage. If this is true,

then cells which are programmed will remain off.

2. A cell which is programmedn will tend to leak slowly toward theff state. However, the
switch will be effectivelyon, passing all input current, for a large range of voltagesdfé V
supply, one can expect about four volts range, above whighfiut current will be reduced).
Consequently, the dynamic memory does not need to be reftesiten, reducing overall

power consumption.

3. Another consequence of the large range of voltages fochwtiie switch ison is that the
memory does not need to be programmed down to zero volts. Asudtrthe core cell does
not need any nMOS transistors at all: Thée(n) value to store can be programmed through a
single pMOS transistorMs). Due to the limitations of unipolar devices used as swicktee
range of voltage values which can be stored on the capasitnited to the positive power
supply down to somewhere in the range of 1 to 2V above grouhid Vlalue suffices to keep

the switch open.

4. Because the correlator array operates on a slow 1 to 2 rok, ¢heere is plenty of time for
refreshing between cycles of the correlator, so that thigadligwitching which occurs during
dynamic memory refresh does not have any effect on the apatmgssing. AlIV columns
in a single channel (row). are refreshed together. On each correlation cycle, oneeabthis
is refreshed, so that the entire memory is refreshed é\decycles (\/ = 16 on our prototype

chips).

We have used both standard static (back-to-back invemseg)ory and the dynamic cell

described above in prototype designs. As is generally tse wath VLSI memory arrays, the
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Figure 4.17: Efficient dynamic memory cell for the corretadaray.

dynamic version consumes more power due to the constarddeaknd refreshing, but takes con-
siderably less layout area than its static counterpart,tatlee fewer transistors required but also
due to the fact that the cell can be made with a single typeaaststor (pMOS, in the figure) which

allows a much more compact core cell.

4.4.2 Bucket Brigade Device

Pipelined, sampled-time analog delay lines have a numbeiffefent possible imple-
mentations, many of them rather complicated. The task ofitay line in the acoustic transient
processor requires both a pipelined delay and an additimur@ 4.6). We implement the delay-
accumulate register usingoaicket brigade devic@BBD) [60]. This device is similar to a CCD line,
but is more appropriate for this application, in which theteyn is clocked at a rate of 1 or 2 ms:
while the charge-transfer efficiency in a bucket brigadeess Ithan that of a CCD [61], the CCD
is adversely affected by dark currents in the quiescent stlatl cannot operate at slow (auditory)
rates. Large polyl-poly2 capacitors, which are signifigaletss affected by leakage currents than
CCD capacitors, store the charge at each bucket brigade node

Figure 4.18 shows the bucket brigade line. It is driven by mowerlapping two-phase
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Figure 4.18: Details of the bucket brigade device (BBD).

clock. Each BBD transistor’'s gate is coupled to its drairotigh a capacitor (preferably several
hundred fF or greater). At the start of a cycle, the analogeséd be transferred (a voltage measured
negatively fromV,,) is stored on the transistor source, and a valu&gf— V3, is stored on the
transistor drain, wher&, is the transistor threshold voltage. The clock raises ttie-gasource
voltageV,, of the transistor while ensuring a positive drain-to-seuroltagel/y,, initiating current
flow from drain to source. Provided that the capacitors aindaad source of the transistor are
the same size, the voltage drop at the drain will equal theagelrise at the source. Current flow
becomes negligible wheWi,, = V4. The final voltage at the source is therefdig, — V;;,, and
the final voltage at the drain, when the clock voltage rettwrground, is the value originally at the
source.

Although the explanation above describes the theoretpatation of the bucket brigade
device, in practice such a system suffers from significasgde due taharge transfer inefficiengy
primarily because on any given cycle, some of the chargeireni@pped under the transistor gate
and is injected back into the previous stage at the end ofyble.c An additional transistor per
BBD stage, gated by a constant voltdgg, alleviates the problem and can increase charge transfer
efficiency from 97% to 99.7% The voltadé,, has an optimal value which can be determined
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experimentally but which is typically a few tenths of a vadidw the positive power supply,q [62].

The bucket brigade device may be put into service as an adatonquite conveniently.
Most bucket brigade circuits in the literature are used asogndelay lines with the sampled volt-
age applied to one end of the BBD and the output detectsthges later. Our use of the bucket
brigade as a pipelined accumulator is apparently a novélcagipn of the device. Our bucket
brigade receives input at every single stage in the formeptrtial column sum current provided
by the correlator template array. The input current is gweitton and off through a source-switched
transistor. Integration occurs during a short, fixed-wipthse determined by the signa} (Fig-
ure 4.18). The transistor is switched by the source rathaar the gate to prevent charge injection
into the sensitive bucket brigade capacitor node. A simileatment to that given to the bipolar
mirrors of the log-domain structures of Chapter 3 is givemh source-switched mirror. Rather
than being a base compensation scheme, its primary purpésgiovide sufficient current to the
mirror at all times to enable it to charge up its own parasitipacitances quickly and give the fastest
current-switching response. The parasitic capacitantedes the source and gate of the source-
switched transistor will tend to pull down the gate voltageew the source is lowered. If the gate
is part of a simple mirror, then the circuit recovers by chagghe parasitic capacitance directly
from the input current, which often is very small. If the noircannot recover fully in a short time
compared to the period @fs, then the linearity of the current-to-voltage conversiaffess.

According to the channel-differencing algorithm, there awo matched bucket brigade
devices in the system. The input current from the templateyas shared, with the integration pulse
¢3 alternating between the two BBDs. The output of one buckgilde must be subtracted from
that of the other, according to Equation (4.13). We accashpthis with the switched capacitor
circuit shown in Figure 4.19. We measure the output reldtvibe voltagel,.;, and scale it by the
ratio C /Cs (the scale is arbitrary). The circuit must be resetdyyat the same frequency as the
bucket brigade clocks. The output is valid betweendhend S; clocks. The bucket brigade is
fully pipelined, yielding one full correlation at every tarstep.

4.4.3 Circuit input section

The circuit receives its input as an array of currents fromfilberbank frontend system.
We have adopted a system which allows multiple templatestaior integrated circuits to be con-
nected to a single filterbank frontend. One template cdoekcts as the “master,” receiving the
currents from the frontend filterbank, and producing vatagvhich are used to mirror the input
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Figure 4.19: A switched capacitor circuit to compute chaulifeerences at the output.

currents throughout the array. The remaining templateetaiors act as “slaves,” receiving the
voltages produced by the master template correlator as$ mgher than currents. Fanout is not a
major problem due to the small size of the currents and the spreeds (1 to 2 ms time constant)
at which the input signal changes. Figure 4.20 shows thelsigransistor circuit made of pMOS
devices which acts as a switchable current mirror. Makimgvititage/current enabling switch the
same size as the switch devices in the memory cells helpsitgaimesimilar surrounds for the input

with respect to the core of the correlator and so improvesitag characteristics.

4.4.4 Characterizations of the VLSI Hardware

The integration of current onto the bucket brigade nodesetyoapproximates a current-
to-voltage conversion, resulting in a linear voltage cleaagthe bucket brigade stage proportional
to the input current. The current-conveyor driver circ@itsure a quick response to the pulse
even for very low-level input currents. The current-totagke conversion ideally should be linear;
thus an important characterization of the hardware is deténg this response. The linearity can
be determined by randomly selecting one template memokyerebling it, disabling all the other
cells, and presenting the system with a single pulse on tme sdannel as the selected memory
cell, having a duration of one cycle of the bucket brigadee $istem is clocked until the output
changes in response to the input pulse, and the height ofuipeitois measured. This procedure
is repeated for a range of amplitudes of the input pulse, andifferent randomly-selected array

positions. The response of our system is shown in Figure 4.21
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Figure 4.21: Linearity between output voltage and inputenir

The charge-transfer efficiency of a BBD is not as high as thaafCCD; the measured
efficiency of our BBD is 99.7% per stageA signal passing through the entire bucket brigade (64
stages) loses 15% of its charge, but this does not signilicafiect the classification performance
of the system. Figure 4.22 shows the response of the BBD toed finrrent of A integrated
onto one of the 64 taps in the BBD over a fixed duration (widtihppulse) of 3.4us, then relayed
to the output. We repeat the measurement for each of the 64tBgD The randomly distributed
variation in outputs (14.5%) is typical for device mismatehhe MOS transistors which mirror the
input current onto the bucket brigade capacitor (see Figi#@). The charge transfer efficiency is
determined by matching the tail of the impulse response dliigat rise in the baseline reference
toward higher taps) to a simple model of charge transfer.

Disregarding the losses due to charge transfer inefficjameycan use the output of the
BBD to generate a map of the transistor mismatch across thelage, as shown in Figures 4.23
and 4.24 for input levels of 1A and 100 nA, respectively. Systematic offsets exist in lwbthnnel

number and time bin, following a vaguely sinusoidal pat&milar to that reported in [63]. These

3This represents the best response out of several fabriqaiis. Why the other fabrications showed decreased charge
transfer efficiency for essentially the identical circaiybut has not been determined.
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Bucket brigade impulse response
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Figure 4.22: Impulse response at each tap of the bucketdaridgevice.

mismatches vary significantly with current level and thus ianpossible to correct to any useful
extent. Fortunately, the correlation is a distributed cotafion by which most of the random varia-
tion of individual components gets averaged out: we deperthi® massively parallel nature of the
correlation to self-correct circuit mismatch.

4.45 Experimental Results

We designed and fabricated a chip containing a single templarelator in a standard
1.2um CMOS technology. The size of the correlator is gg® x 1170um. in a 2.2 mm die. Fig-
ure 4.25 is a photomicrograph of the integrated circuit. ¥¢ed this chip using an experimental
setup which implements the frontend system (bandpasditérand subsequent rectification and
smoothing of the input signal) digitally, on a workstatiofhis digital signal processing is per-
formed offline, with the resulting sixteen channels of otitpaved to a file. They are downloaded
as needed to a 16-channel current-mode D/A chip, which pesithe nanoamp-level currents used

by the correlator chip. This setup allows us to evaluate theetator independently of the frontend
filterbank system.
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Figure 4.23: Matching between devices throughout the tatagt 1A input.
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Figure 4.24: Matching between devices throughout the tatagt 100 nA input.
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Figure 4.25: Photomicrograph of the acoustic transienetator, a 2.2 mnx 2.2 mm die fabricated
in a 1.Z2um CMOS technology.
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Among the tests we performed was to take a template for agma-aled acoustic transient
from our simulation program, download it to the chip, themgpare its output to that of the simula-
tion program, where both are given the same input. We usedliffgvent transients for the input,
one corresponding to the template class and the other agtiffelass example. Figure 4.26 shows
both measured and simulated output of the correlation letlee template for “can” and a “can”
sound and a “finger snap” sound as input. Figure 4.27 showsgpesite case, the correlation be-
tween the template for “snap” and the same transient infRésidual errors between the simulated
and measured analog outputs are shown at the bottom of eatchiibst of the residual error is
systematic and can be traced to the nonlinearity in the outoevoltage conversion (Figure 4.21).

Total power dissipation of the acoustic transient proaedspends primarily on the static
dissipation of the amplifiers in the switched capacitor wirand the bias current in the current
conveyors driving the bucket brigade inputs. At minimalues of these biases allowing correct
system operationW ;. = 0.4V and amplifier bias = 0.6 V), average power dissipat®80uW

with a peak dissipation of approximately @@ during the onset of a transient input.

4.4.6 Summary

We have designed and fabricated a chip intended for use assifir of transient (short-
term) acoustic signals. A signal to be classified is decoegbdsto an array of energy envelopes
across a set of frequency channels, and normalized acroshaginels. The chip uses analog
current-mode circuits to produce an output voltage engpthie running correlation between this
time-frequency representation of the input and a storeglem of binary values. The pattern-
classification algorithm which the chip implements has ts@wn through simulation to be robust
to binarization of the template values when the templatgegaéncode the expected sign of the time
sample or pairwise channel difference of the normalizedtsip

Test results show that the chip output voltage closely fadlpredicted values from sim-
ulations. The chip can be used to classify acoustic trangiegnts quickly, accurately, and with
a high degree of robustness due to a parallel, pipelinedtactire. The power consumption of
30uW per template is significantly lower than that for a DSP orngjcocessor performing the
same computation, and the layout area of @@0x 1170um per template allows a high integration

density.
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Figure 4.26: Measured correlation of repeated sounds “@aftj and “snap” (right) with the “can”
template loaded into chip memory.
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Figure 4.27: Measured correlation of repeated sounds ‘@eaft) and “snap” (right) with the “snap”
template loaded into chip memory.
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4.5 The Digital ATP

A notable conclusion from the software trials of the Acou3tiansient Processor was the
observation that comparing binary inputs against binamyptates, contrary to early results (which
were flawed), yields results comparable to the continu@lised input case. In some trials, the
results from the binary-binary case were better than thasarfy other configuration.

Consequently, it is possible to build a correlator whichngrely digital. It is not “digi-
tal” in the traditional sense of a DSP or microprocessoth fitating-point operations on wide data
busses, but rather involves operations efficiently and lsirinpplemented at the bit level with op-
portunities for significant amounts of parallelism. Theitend processor of such a system remains
analog (though not necessarily continuous-time), and mégct be the same frontend as designed
for the original ATP system. Three changes to the frontentitacture should be noted:

e Because the L-1 norm function does not change the relatiyes sif the outputs, but only
serves to scale the entire output, the normalization doeshamge the binary output and may
be omitted.

e Each output is compared against that of its neighboring relamsing a comparator and the
result is a single bit per channel. There is one less outaun tiiere are channels.

e The outputs also may be compared against a single threshhld resulting in a second bit
per channel. This gives some minimal amplitude informati@md can be used to prevent
the system from responding to noise during quiet periodb@friput. Typically, the two-bit
output will be evaluated as a trinary number taking on valugs0, and1.

The frontend filterbank system as proposed can be consideiwdart A/D” which takes a contin-
uous-valued input and produces a set of, say, 16 to 32 bitprising a feature vector evaluated at
1 ms (or similar) intervals.

4.6 Digital correlator custom VLSI architecture

Because a binary-valued input significantly decreases dh#plexity of the associated
correlator circuitry, it is possible to explore more compémcoding schemes for both the input and
template, such as binary-trinary and trinary-trinary etations. There are additional reasons to

investigate alternate ways to produce an efficient cofoglatalue. In the additional software trials,
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binary-binary correlation resulted in excellent classtfien accuracy. However, continuous values
of the inputs were used to determine the binary templatesy #wugh only binary inputs were
presented to the system during the classification testrifdte methods of template generation are
required when a quantized representation of the input ¢task that is available during training.
The methods used are explained in Section 4.9.

In a system using continuous-valued inputs, channel @iffeing produces both positive
and negative results, and so it is beneficial to commute tifiereince operation to the end of the
system to avoid the necessity of manipulating signed vahresighout the system. In a system with
binary or trinary inputs, however, signed-value compateiare reduced to simple logic operations
(see Table 4.8. Thus arithmetic manipulation of signedegls not a problem, and it is desirable to
reduce the input channels to binary form as soon as posaitiie stages of processing. The channel
difference operation optimally should be assumed by thetémd system, computed prior to the
correlation summation, thus greatly reducing the compfexd the correlator. The multiplication
takes the form of an exclusive-or operation between eadlt inipand the corresponding template
bit for the case of binary-binary correlation. The trinanypary case uses the same exclusive-or
between the sign bits of the input and template, but usesrati ‘Gperation between the amplitude
bits of input and template. This correlator logic is cladfia Table 4.8.

template input accumulate
template| input | accumulate ampl | sign | ampl | sign
sign sign 0 X X X 0
0 0 +1 X X 0 X 0
0 1 -1 1 0 1 0 +1
1 0 -1 1 0 1 1 -1
1 1 +1 1 1 1 0 -1
1 1 1 1 +1

Table 4.8: Left: logic for the binary-binary correlationeyption. Right: logic for the trinary-trinary
correlation. “X” represents a don't-care condition.

A good strategy for the digital system if a custom chip weredalesigned and built would
be to keep the same parallel column-wise configuration amtked-mode design, and to keep the
template SRAM cell incorporated as an integral part of thetesy. A first impression might be
to perform the correlation as an addition using adder dscun other words, the bucket brigade
device would be replaced by a combination adder and shiistexg However, multi-bit arithmetic
consumes space, and in a layout it is impossible to fit thé pitthe adder/shift register cells to the
pitch of the SRAM cells.
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In digital design, particularly in regard to adders and ipliirs, a convenient way to
reduce circuit complexity is to shift the burden of the psirg from space to time by serializing
part or all of the process. This is exactly what is called fothie case of the ATP correlator, since
once the system has been pipelined column-wise, the nunfitsrial operations performed per
template per unit time is small: in fact, it is one exclusorefollowed by a single addition followed
by a register shift. This leaves considerable opportumitysérial operation. Namely, the addition at
each column can be replaced by a counter, in which the inpuesented one channel at a time; this
architecture is shown in Figure 4.28. There are two linescpkimn: one to hold the input value,
selected by row, and one to hold the template value, alsateeldy row. Only one exclusive-or
gate is required, at the bottom of the column, and the restitteoexclusive-or sets the direction of
an up-down counter that performs the summation seriallyefarh row. At the end of each input
cycle, the contents of each counter are shifted over to tkiecokimn, where the counting continues
on the next cycle. The counter under each column needs orly br&ny bits wide as the maximum
count possible at that column, so the size of the counteri{&) is proportional to the log of the

column number.

sign

Input sign o—
Input
amplitudefwr

event cIockoi+| channel countelka| time bin countel'»
channel addresg time bin address .

sign
Template (32 channets100 time bins) |amp

Figure 4.28: Block diagram of the sequential digital catet architecture.

sample/hold: Input (32 channels)

<  column sum
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4.7 Digital correlator semicustom FPGA architecture

Even under the condition of an input presented seriallyerathan in parallel, the compu-
tational requirements are not great and the digital systmbe operated on a long cycle time and at
low power. The entire correlation can be made serial witleowgteding the capabilities of off-the-
shelf TTL and/or CMOS IC components. While a board-leveigiesannot be as power-efficient,
compact, or scalable as a custom digital VLSI design, it @ambade quite cheaply and with a short
development time. Consider a rather large system, equivédethe largest systems simulated in
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the software trials of the ATP, which has a 32-channel inmgt @ 32x 128 binary template. An
entirely serial operation for a single template requiregnting 4096 times within the 2 ms input
sample timeframe. If the counter can be run flat-out at onatcper clock cycle, a driving clock
of only 2MHz is required. This is slow enough to allow the systdefinition to be expanded to
include trinary operations, so that template and inputeshre 2 bits wide and take on the effective
values[—1,0, +1]. Trinary-valued operations require twice as much memod,tamce the clock
rate.

The resulting template size of 8192 bits is not chosen auilify as we consider a de-
sign using semicustom FPGA and off-the-shelf parts. A gduaice for the FPGA is an Actel
1000-series part, which features one-time-programmingP)Qusing fuse-like connections which
are activated with externally applied voltages. The chegpes of FPGAs come with nhumerous
configurable combinatorial and sequential logic modules,dm-board memory is only available
through the use of sequential modules as latches or flip-fiygsge blocks of memory are not
possible (except on the more expensive FPGASs). Howevarrdatively simple to build the state-
machine circuitry necessary to interface the FPGA to eatemmemory, particularly as there are
plenty of input/output ports available for address and datses. SRAM chips come in a small
number of standard sizes, one of which is 8K8 (that is, 13 address bit8'¢ = 8192) and 8 data
bits), a configuration which allows 8 templates to be storedl r@ad in parallel. In this configu-
ration, rather than treating the 8-bit data bus as a singie, oye treat the bus as 8 separate 1-bit
values. There are, of course, alternate ways to arrangert@ates in memory, but having all tem-
plates addressed in parallel is the most efficient for séveasons which should be obvious from
the following discussion.

The next step is to determine how to deal with stored valuemgiuhe course of the
correlation computation. The system has to compute a ebiwel based on the current and past
values of the input, so either it must store the input values the time span of the template, or
it must store intermediate column results in a pipelined meanas described above for the custom
VLSI architecture. Storing the input requires 32 bitsl28 samples. On the other hand, storing
intermediate values requires only 13 bits128 columns (13 bits are required instead of 12 due
to the trinary operations: the total range of the outputasifr—4096 to+4095, which is a 13-bit
result)?

4This value is an upper limit. Fewer bits are required if a @ignt way can be found to pack the results, since the
first column result requires only 6 bits, with the number @ lgirowing as the log of the column number as noted above.
In practice, packing the columns is a procedure too comglitto be worthwhile using in a serial implementation.

152



The solution | adopted was to use the same template SRAM clipap the intermediate
column results. The most simply implemented solution idlamethe intermediate store area to take
away from the column space used by the templates. This l¢hearumber of columns unknown,

but with the number of channels fixed at 32, determined bydhevfing relation,

8192 > 2(32n) + (16n), (4.25)

where we allow 16 bits for each intermediate result for theegaf simplicity in imple-
mentation, even though only 13 bits are necessary. Thestangenber: which satisfies the relation
isn = 102. In the implementation we rounded this to 100, for reasonsooienience, one of
which was to allow room to store the final correlation restite memory allocation in the SRAM
is depicted in Figure 4.29.
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< of64bits I of 16 bits ™|

Figure 4.29: Memory allocation in the digital correlator ARR.

Accessing memory is a matter of building a semicustom chif wivariety of binary
counters. One seven-bit counter is needed to count fromdl2éro. The count must be downward,
in order to effect a shift towards the output by reading eatérinediate column sum, accumulating
over the number of input channels, and placing the resuitthet storage area for the next column
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up. Template values are counted in blocks of 64 (32 chann@dits per template value) starting
at SRAM address zero and counting up. Intermediate columrssre counted in blocks of 16,
starting at SRAM address 8191 and counting down. The twaegadie easily obtained by inverting
and shifting the output of the seven-bit counter and makijplg, as shown in Figure 4.30. Addi-
tionally, the column address to write to is easily obtaingddiching the seven-bit counter output
before each new count.

4-bit down counter
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Figure 4.30: SRAM address generator for the digital coroela

A simple finite state machine can determine the correct ayickaldressing, reading, and
writing the SRAM. The state diagram of this machine is showFkigure 4.31. It requires only 4
state variables and can be easily designed by hand in onsgverhe complexity of the FSM is
enough to prohibit the use of gate-level IC components. Hewaét is just about the right size for
a semicustom FPGA part such as an Actel 1020, which at thedfmaiting could be bought for
under $15 each. The digital architecture was designed woish and time of development as the
primary constraints. To keep the costs down, the design plasrgo three parts: An SRAM for
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template and column sum storage, one Actel 1020 part for tite tate machine controller, and

another Actel 1020 part for the correlator itself.

count < 100

shift in column sum

reset 100 count
count = 32 count < 16

count = 10Q

wait on input
count = 16 shift out column sum

count < 16

Figure 4.31: Digital correlator controller state diagraimplified.

The correlator semicustom chip consists of eight registeparallel, one for each data
bit of the SRAM. Each register is a 13-bit arithmetic unit @ale of 2’'s-complement increment and
decrement and a right shift/rotate operation. At the frdr@ah register is logic for translating the
two bits of input and template into their trinary values amdedmining the appropriate counting

operation (increment, decrement, or no operation). Theskzior is depicted in Figure 4.32.

count direction ‘ L L |
| ¢ ¢ c ¢ c
| A A A A :
! g S g S g S g S 3
latch : 1 1 1 |
! 4 r C 3
Address Isb i .
SRAM data | - b o b o 0 oH |
‘o Output

input data: i

shift/mt»—’ clockl_| T 1 | I
1 [ [ B

Figure 4.32: Serial digital correlator structure for onempéate.

In addition to the functions directly associated with theretation, the correlator chip is
also capable of performing a simple analysis of the outpataah timestep and determine if any
output exceeds a threshold and, if so, which output has thénmian value. The serial fashion in
which the rest of the architecture is implemented makedtinistion especially simple. At the end

of the first accumulate cycle, after a new input vector is gmé=d to the system, the last column
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sum, which holds the correlation result, is shifted out Mf8Bt:for writing to SRAM. At that point,
each of the eight correlations can be compared one bit ateaftm the most significant bit to the
least significant bit in order to select the maximum (thene lba more than one winner if several
templates produce the same result). A threshold value camjdaed into the system serially, as
if it were a ninth correlation output. Because this paracubutput selection mechanism is kept
simple on purpose in order to fit on a single chip, there is amng global threshold rather than a
threshold for each channel. The global threshold valuedisgnted in parallel to the controller chip,
which broadcasts the value serially to the correlator chipeappropriate time on each input cycle.
This setup preserves the scalability of the architectarshiich a single controller chip can service
multiple correlator chips. Each correlator chip sends aeives one bit of information necessary
to spread the maximum-finding calculation over all the datog chips in the system in order to
produce a global maximum.

Actel parts are able to drive moderate loads such as LEDsottpeit maximizing circuit
generates separate outputs for each template in the systaioh can in turn drive an LED bar-
graph array for a demonstration system capable of lightisgexific LED in response to one of
several input transients.

The printed circuit board developed for this applicatioig(ffe 4.33) includes space for
one controller FPGA, two correlator FPGAs, an interfacéntoftontend system which provides the
inputs, and an interface to a digital I/O card on a computerudph which the template values can
be programmed. Fully populated, the board can simultamfgcosipute 16 template correlations
at 1 ms intervals.

4.8 The Switch-Capacitor Frontend

The constraints on the architecture of the frontend systens@mewhat looser with the
digital ATP used as a backend instead of the analog correletw instance, the frontend does not
need to compute the L-1 normalization, as mentioned abo%eation 4.5. The rest of the system
remains the same, and the output requires comparatorsftwmpahe pairwise channel differences
and produce the binary result.

The custom analog VLSI frontend system had several problémamain one being the
factor of (up to) three difference in gain across channetgotiunately, large component mismatch
is a fact of life with MOSIS processes such as the AMIn2process used to fabricate the frontend
chips, and heightened sensitivity to mismaitch is a factfefviith high-Q systems. And although
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Figure 4.33: Digital ATP correlator system, configurabledp to sixteen templates.
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some gain mismatch can be tolerated by the transient ctag#ifi algorithm, mismatch of the sort
encountered in our fabricated versions of the log-domatuiticannot (without adaptation or other
corrective circuitry).

| investigated a board-level design using switched capafilters to generate real-time
frequency decompositions of an audio or computer-geratiafmit. This design effort was in part
to explore a different frontend architecture for use with thgital correlator, and partly for com-
parison with the custom integrated circuit log-domain feord. Of particular interest is how good
the matching between channels is for the switched capasy&iem, and whether the gain in per-
formance is worth the tradeoff in integration density and/@oconsumption. Like the design of
the correlator, a custom VLSI analog integrated circuit Mautimately achieve much better power
efficiency and area efficiency, but a board-level system isxaellent demonstration of the concept
which can be developed in short time at relatively low coste Tost of the component-level sys-
tem is, in fact, about the same as a small custom chip (4)rfabrication (through a cost-efficient,
shared process such as MOSIS). The bandpass filter configuadtthe log-domain chip can be
efficiently reproduced in a commercially available dualem@hpurpose second-order switched ca-
pacitor filter IC. Each of the two filters on each chip can beedins a bandpass filter. The first
section uses 3 external resistors to form a fige@Q = 10) bandpass filter with a gain equal (or
proportional) to the&) and a center frequency determined solely by the clock frecyuel he second
section uses 2 external resistors to form a bandpass filt€r ef 1 with a gain of 1 and center
frequency equal to that of the first bandpass filter. The skfitiar uses the mode 1A configuration,
which yields two bandpass outputs, one inverted, one note\Wh= 1, these two outputs are of
equal magnitude. These symmetric outputs can be combinthdavciomparator and a multiplexer
which passes the maximum function to its output, thus riegia full-wave signal rectifier. Another
switched capacitor filter chip, a 4th-order Butterworth p@ss, smooths the rectified output. Two
more comparators complete the channel: One computes feecdife with the neighboring chan-
nel, and the other computes the difference with a globakttoiel. The thresholding comparison
allows the signal input to have trinary values of two bitsreaacoding values of-1,0,+1]. |
designate these two bits “sign” and “amplitude”, with thadry encoding shown in Table 4.9. The
digital semicustom system described in the previous seasialesigned specifically to allow any
combination of trinary and binary correlations.

There are two choices for clocking the bandpass filters. ®ne place the burden of
determining the center frequencies on the filter design,dilygumode 2 or mode 3 filters, whose
center frequency can be adjusted relative to the clock &ecy That way, only one master clock
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ampl | sign | trinary
L X 0
H L -1
H H +1

Table 4.9: 2-bit Sign-amplitude trinary representatioringiut and template values in the digital
ATP. “X" represents a don't-care condition.

drives all the filter chips (plus perhaps a few clock signaisvetd by dividing down the master clock
by powers of two through a series of flip-flops), but each fitemuires a specific set of resistor
values to create the correct gain afdfor the channel. Generated this way, filters are difficult
to match. The other method is to generate a separate cloaafdr filter. A convenient way to
generate the necessary clocks is to divide a suitably laggenclock signal by integer values, one
for each channel. This method is hardware-intensive, hstabmpletely digital and therefore can
be programmed into a semicustom part such as an Actel chimad ene of which is about the
right size for driving a 32-channel system. It is also pdssib make the system programmable, so
that the board-level system enjoys an additional gain dwerctustom chip of allowing Mel-scale
spacing (or, for that matter, arbitrary spacing) betweerdpass centers.

Figure 4.34 depicts a complete bandpass channel. Eachalhaquires two chips: One
MF10CCN dual general second-order filter and one MFACN 4deroButterworth lowpass filter
(both device numbers refer to National Semiconductor paitscompatible devices are made by
Linear Technologies). Three additional chips are shareddsn channels: one LM319N dual high-
speed comparator, one LM339N quad comparator for the quiptt shared between two channels,
and one CD4053 triple 2-to-1 analog multiplexer, sharedéen three channels. External compo-
nents are limited to five resistors for the bandpass filtdrsvoch four have the same value; DIP-
style resistor packs help improve matching charactesistitree pullup resistors (in SIP packages
for minimum space) to interface the CMOS and TTL-compatgdads, and a resistor-capacitor pair
to create a simple continuous-time antialiasing filter leetvthe rectifier and the lowpass filter. To
interface to the serial input method of the digital correlah few additional digital multiplexers are
required at the output (a tree of four 8-to-1 muxes followgdhe 4-to-1 mux, for a 32-channel
system).

A separate system drives the filter inputs. This system stansf a microphone connector,
a single-chip audio preamplifier (Analog Devices SSM-2Gtiipwed by a simple R-C antialiasing
filter and buffer (see Figure 4.35) [64]. The audio input hagymmmable gain and can be coupled
to a buffered controller such as a sound card PCM codec onottteotling computer to generate

159



output, channdl-1

vdd

vdd
antialias filter

— - switch-cap lowpass o Sj

Q=10 Q=1 30K0 p p w %5 Sign
vV, MF10CCN-1| | MF10CCN-2[ gain=—1] MFACN
— In
gain=1 ] .

f, clock . | | CD4053-1 l Amplitude

switch-cap bandpass analog MUX s Clock comparators

fast comparator N
Vthresh

output, channdl

Figure 4.34: Switched-capacitor bandpass filterbank|esicigannel.

analog outputs which feed the audio preamplifier in simitaargement to the analog microphone
input.

The digital correlator system provides handshaking sgynatessary to keep the correla-
tor and computer in synchrony; otherwise, using microphmraher real-time input, the handshak-
ing must be generated on the frontend side with a 1 ms-petamk ¢generated from the 20 MHz
master clock using four four-bit decade counters in seri€h)s setup assumes that the correlator
system is clocked fast enough to keep up with the input, sotliea“wait-on-input” handshaking
signal provided by the correlator is not required.

ATUF  1o0
In+ o |

6.8kQ 10kQ
200pF—==
6.8kQ
In— o |\ ‘/\/\/\
a7pF 100 1N5231 (12V)

Figure 4.35: Audio input circuit for the frontend system.

A reasonably-sized printed circuit board can handle ardivWdhannels, so the system
was designed for two boards, each of which produces halfeoBthoutputs, and which work to-
gether such that only one board has an input section, one boatains the master 20 MHz clock,
one board contains the final 4-to-1 multiplexer that comrateis directly with the correlator sys-
tem, and one board contains a 12-bit D/A converter (Maxim Mb8B) generating the bias voltage

for determining the threshold at which output signal le\aises the amplitude bit to change state.
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Figure 4.36 is a photograph of one of the two filterbank baards
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Figure 4.36: One board of the switched capacitor frontetettiiank, bandpass filtering and encod-
ing the audio input into sixteen parallel channels.

4.9 Experimental results of the trinary-trinary correlation hardware

4.9.1 Method of input segmentation

When training a template correlation system using the geevalue of the training set
examples, the output can only be expected to produce aleeliddssification when the input is
perfectly aligned to the template, not shifted in time to tight or to the left. This is very clearly
shown in the output response of the trinary-trinary cotoglas shown in Figures 4.40 and 4.41, in

161



which the output for the target class, though strong andgiarg at and near the point of best align-
ment, is accompanied by spurious false classifications &waythe alignment point. These false
classifications can be ignored only if the segmentationrdlgn correctly identifies the presence
of a transient event and predicts the correct time at whicctept the classification result. Mak-
ing the correlation output temporally shift-invariant ietpurpose of some of the training methods
discussed in Chapter 5, such as Independent Componentség)aBupport Vector Machines, and
Perceptron Neural Networks. Any system which assumes aligeiment of the input and tem-
plate requires a robust segmentation algorithm to prelagcbest point of alignment. Software trials
of the continuous-valued input, binary-valued templathiéecture used a segmentation scheme
amenable to analog hardware, shown in Figure 4.37. The rgwubof all channels of the frontend
system (after normalization) were thresholded, summeetheag, and binarized by another thresh-
old, resulting in a “noisy” segmentation. The noisy segragonh result was filtered in parallel by
two lowpass functions with time constants of 1 ms and 10 nspeetively, thresholded once more,
and combined with an OR operation. The longer time constastired a clean segmentation for
the duration of the input transient, while the shorter timmastant ensured a quick reponse of the

system to the onset of a transient event.

Channel 1 — threshold J H L
lowpass
1=1ms [ threshold
Channel 1 — threshold
) - threshold ﬁ
: : lowpass
/ T= mes 1 threshold "clean" segmentation
Channel M — threshold

1

"noisy" segmentation

Figure 4.37: A mixed-signal method for detecting the on$et mansient event from the output of
an analog frontend filterbank.

For the trinary-trinary correlator, it was desirable to &éav similarly simple algorithm
for segmentation, but one which could operate on the trifrantend system output using purely
logical operations in keeping with the rest of the correlaygstem rather than relying on analog
computation. An algorithm which proved adequate to the tsi$ke finite state machine shown in
Figure 4.38. This is essentially a binary version of theinafsegmentation algorithm. The first
threshold function is taken care of by the frontend systeedfiin the production of the amplitude
bit on each channel. The segmenter sums the amplitude bitssaall channels, producing a value
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which is denoted by: in the figure. The value is thresholded by comparing it to a constant
value, which was chosen as 7 for a system of 32 frontend fidtdclthannels. The two filters are
approximated by a system of two counters whose timeoutw #fie system to ignore short glitches
in the “noisy” segmentation. Although the segmentatioroathm must operate in real-time, it can
operate with a large amount of delay, because the transiset occurs 100 samples (1/10 second)
before the point of optimal alignment of input and template.

event detected
X 20

wait for event
cl-—0
c2—0

X ~—2 c2=X c2++

Figure 4.38: A simple finite state machine which detects tisebof transient events in the trinary-
valued frontend filterbank output.

4.9.2 Method of template generation

Trinary input values and trinary template values allow ntoue variations on both the
method of tempate generation and the method of correlatiompatation. Here we present only the
most effective of those training algorithms we investigat&he method presented below assumes
that all events in the training data have been “tagged” bymsater, whether real-time or non-real-
time, automatic or human, and that values in the input arfayn| take on valueg—1, 0, +1}:

1. For all events in the training dataset:

(a) Align the training data on tags and fill to length of teni@lél00 samples).

(b) Sum all aligned instances of each class using the ralatio

p[n, m] = p[n,m] + z[t — n,m]. (4.26)
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2. Threshold the template values using the relation

1 ifpn,m]>0
pln,m]=1q —1 if p[n,m] <0 (4.27)
0 otherwise

4.9.3 Experimental Results

The performance of the trinary-trinary correlator was aoméid using the same cross-
validation test as for the original software simulationgta# algorithm, except that the hardware
itself performed the frontend time-frequency decompositind the correlation summation. Tem-
plates values were determined offline using data obtaireed the frontend hardware. Figure 4.39
shows the templates derived from frontend system data fistap of the cross-validation test.

Figures 4.40 and 4.41 show example outputs of the frontestdisy the correlator, and
the segmenter at two times during the cross-validation t€st these four input transients, the
correlator performed correct classification. The thredhvallue which the frontend system uses to
determine the amplitude bit for each channel output is aadegf freedom affecting system perfor-
mance in trinary-trinary correlation tasks (in binary-doiy correlation, the amplitude bit is ignored,
so the threshold has no effect on system performance). thtieshold is too high, then the trinary
frontend output values become zero always, and the caaelfils, setting a clear upper limit on
the optimal threshold value. If the threshold is zero, tHenftontend output becomes the same
as for the binary case. It is not obvious that this should aldgmerformance, particularly since
in the original software trials binary-binary correlatiparformance was very close to that for the
baseline algorithm. In practice, however, averaging tinaryi training data produces templates in-
ferior to those produced using continous-valued trainiaigudand performance suffers. The optimal
threshold voltage is only meaningful in the context of inpanhsduction, audio preamplifier gain,
and bandpass filter gain, but may be determined empiricediy fcorrelation performance under
conditions of different threshold voltage.

The remaining tables (4.10 through 4.12) represent thenagletied statistics from several
runs of the cross-validation test. The first, Table 4.10, s&maple test of the performance of the
system in the absense of a real-time segmenter, in whichdtrelation value is accepted at the
time of best known alignment of each input transient. Thelteepresents the best performance
the system can achieve in an off-line recognition task, wig®©9.0%.

Table 4.11 shows the result from the same task repeated thgnfinite state machine

164



Bar Book Dink
100 100 100 100 e :
9 | 90 90 9
80 80 80] 4 ¥ 80
37 . 70 : 7017 70
o | N
g 60 60 |k 60 ] 60
& sorile 50 50| 1 50
~— - - ans [
@ 40 40 40|. F . 40
£ |I o
SV 30 30. ! 30y 0
20 |' 20/% 1 20, % ke 1§ 20 Ii
’ I i L
10 ':l {4 10/ 10} ; il 1o|_, ﬂq
1 HY 1 =
10 20 30 10 20 30 10 20 30 10 20 30
Door Finger Hand Mallet
; 100 100 100
90 90 90
80 80 80
70 70 70
60 60 60
50 50 50
40 40 40
30 30 30
20 20| 1+ |: 20/ |-
L ! aw
10/ ) H 10| E A 10 I
g0 . ..|Ih1h-“
10 20 30 10 20 30 10 20 30
Shelf Tub Unknown Unknown
100 ps o o 100 g o e 1 100 p o o 100 g o e
90 90 i 90 90
80 80 iy 80 80
"r
o) 70 70 r 70 70
g— 60 ' 60 60 60
@ 50 50 50 50
D 400* 40 40 40
E B
= 30 30 30 30
20 200 i} 20/ 20 1
10 10 10 10
LY (LA e L
10 20 30 10 20 30 10 20 30
frequency (channel) frequency (channel) frequency (channel) frequency (channel)

Figure 4.39: Templates for twelve transient classes, ohted from data obtained from the fron-
tend hardware. Frequency is on thexis, with the lowest frequency channel on the right, ambti
is on they-axis, with the transient onset at the bottom of the templatdors correspond to trinary
values as follows: black =1, white =+1, gray =0.
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Figure 4.40: System input and output for sound “bar” (lefty @abook” (right). Top graph is the
frontend system output (32 channels); middle graph is thelation output over 12 classes; bottom
graph is the output of the segmenter showing both the segahératnsient and the optimal point of

alignment.
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Figure 4.41: System input and output for sound “shelf” Jleftd “tub” (right). Top graph is the
frontend system output (32 channels); middle graph is thelation output over 12 classes; bottom
graph is the output of the segmenter showing both the segahératnsient and the optimal point of

alignment.
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Event || Bar | Book | Can | Dink | Door | Finger| Hand | Mallet | Shelf | Tub
Bar 0 0| o 0 0 0 0 0 0
Book || O 0o 0| O 0 0 0 0 | o
Can | O 0 0 0 0 0 0 0 0
Dink | 0 | 0 | O 0 0 0 0 0o | o0
Door | O | O | O | O 0 0 0 0o | o0
Finger| 0 | 0 | 0 | 0 | O 0 0 0o | o0
Hand|| 0 | 0 | 0| 0 | © 1 0 0o | o0
Mallet | 0 0 110 0 0 0 0 0
Shelf|| o | o | 0| 0 | O 0 0 0 0
Tub | O 0 0| 0 0 0 0 0 0

Total instances presented: 199

Correct: 197
Incorrect: 2
Accuracy: 99.0%

Table 4.10: Offline recognition task: Cross-validation be transient dataset using a non-real-time
segmenter.

segmenter shown in Figure 4.38. The main loss in performangdee to the detection of transients
which are not part of the input data set classes. Inspecfitimecoriginal recordings revealed that
these “spurious” transients are at least as loud as some afctinal transient class examples, and
so the segmenter should be expected to detect them and eotisddh to be transients in the input.
The majority of these transients belonged to the recorddapt” and correspond to the sound of
the door being opened (however quietly) between each targetince of the door being closed.
The spurious transient events were hand-tagged as nevietraietasses labeled “unknown,” and
the cross-correlation task was performed again. The re$uiand-tagging the data, shown in
Table 4.12, is over 95% accuracy. Apparently some of theiagsievents were indistinguishable
from handclaps, as shown by the mistaken identity of alle¢lexamples of one “unknown” class.
Problems like this account for the relatively low recogmitrate (96.4%) of the baseline algorithm,
which otherwise should be guaranteed virtually perfeatilte®n linearly separable data. The cross-
validation tests results confirm that the simple trinamgary correlation method approaches the
baseline algorithm in accuracy, even when only trinarpgédl time-frequency decompositions of
the audio input are available for training, and when a sirfiplee state machine consisting of a few
small binary counters and assorted logic is used to segmeimput.

168



Event || Bar | Book | Can | Dink | Door | Finger| Hand | Mallet | Shelf | Tub
Bar o o] o] o 0 0 0 o | o
Book | O 0| o0 0 0 0 0 0 0
Can || 0 | O 0| 0 0 0 1 0o | o0
Dink || 0 0 0 0 0 3 0 0 0
Door | O | O | 4 | O 13 6 4 0o | o
Finger| 0 | 0 | O | O 0 1 0 0| o0
Hand | O 0 0| o 0 5 0 0 0
Mallet | 0 | 0 | 1| 0 | O 0 1 1|0
Shelf [ 0 | o0 | 0] 0 | O 0 0 0 0
Tb || 0| 0 0] 0] O 0 0 0 0
Total instances presented: 199
Total events found: 226
Correct: 186
Incorrect: 11
Missed: 2
Extra event inserted: 25
Correctly identified: 93.5%
Incorrectly identified: 5.5%
Missed: 1.0%
Insertions: 12.6%

Table 4.11: Real-time recognition task: Cross-validationthe transient dataset using the simple
finite state machine segmenter.
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Event || Bar | Book | Can | Dink | Door | Finger| Hand | Mallet | Shelf| Tub | ? | ?
Bar 0 0| o0 0 0 0 0 0O | 0|O0]|oO
Book || 0 0| 0| O 0 0 0 0o | 0o|0]oO
Can | O 0 0 0 0 0 0 0 0o [0]O
Dink [ 0 | 0 | O 0 0 0 0 0o | 0o|0]oO
Door | O | O | O | O 0 0 0 0o | 0o|0]oO
Finger|| O 0 0| 0 0 1 0 0O | 0|02
Hand | O | 0 | 0| 0 | O 1 0 0o | 0o|0]oO
Mallet || O 0 2 | 0 0 0 0 0O | 0|O0O]|oO
Shelf | 0 | 0 | 0| 0 | O 0 0 0 0olo0|oO
Tub | O 0 0| 0 0 0 0 0 0 0|0
? o| 0o | o0o| 0| O 3 0 0 o | o |[0]]o
? o 0 | 0| O 0 0 0 0 0O [0]O
Total instances presented: 215
Total events found: 214
Correct: 205
Incorrect: 9
Missed: 1
Correctly identified: 95.3%

(In set of known targets): 97.2%
Incorrectly identified: 4.2%
Missed: 0.5%
Table 4.12: Real-time recognition task: Cross-validationthe transient dataset using the simple

finite state machine segmenter. In this transient set, @psitransient events were hand-tagged as
“unknown” classes (denoted by a question mark).
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