R. Timothy Edwards

Johns Hopkins University Department of Electrical and Computer Engineering

March 26, 1999

Advisor: Dr. Gert Cauwenberghs

Introduction

- Template Correlation
- An Acoustic Transient Processor in VLSI:
 - Frontend Filterbank Systems
 - Template Correlation
 - Experimental Results
- A Trinary-Trinary Correlator
- Conclusion

Research Goals:

Investigate signal processing systems for which primary constraints are **power** consumption and physical area.

- Develop these systems into efficient analog and digital hardware
- Maintain high accuracy with respect to microprocessor and DSP solutions
- Use circuits with ultra-low (μW) power consumption
- Exploit parallel architectures to achieve robustness in the presence of noise and mismatch

Performance depends critically on the choice of algorithm and hardware.

Applications:

- Handheld or mobile (battery-operated) environments
- Can be used to monitor environment and wake up systems in "standby" mode
- "Smart" A/D conversion

Microelectronic Systems Laboratory Research: Systems and Algorithms

- Continuous wavelet transform (CWT) processor
- Log-domain filters for audio-frequency applications
- Micropower mixed-mode template correlation acoustic pattern classifier
- Model-free adaptive correction of optical aberrations

- Introduction
- Template Correlation
- An Acoustic Transient Processor in VLSI:
 - Frontend Filterbank Systems
 - Template Correlation
 - Experimental Results
- A Trinary-Trinary Correlator
- Conclusion

Acoustic Event Classification Using Correlation

Goal: Try to classify an acoustic event by matching the time-frequency decomposed input against a set of templates. Each template has $M \times N$ values and represents a "typical" example of one class.

Signal (x) characteristics (output of frontend filtering system):

- *M* frequency channels (log-spacing)
- Continuous-time (or Discrete-time)
- Continuous-valued
- Normalized energy envelope

Template (p_z) characteristics:

- One template per class (z)
- *M* frequency channels (log-spacing)
- *N* time-bins (1 ms per bin for transients)

Basic Correlation equation:

$$c_{z}[\,t\,] = \sum\limits_{m=1}^{M} \sum\limits_{n=1}^{N} x[t-n,m]\,p_{z}[n,m]$$

Acoustic Event Recognition: Example

Acoustic Signal Classification

Three main components:

- 1. **Filterbank**: Time-frequency decomposition converts the input signal into an efficient representation for subsequent processing.
- 2. **Template Correlator**: Simple correlation is sufficient to recognize complicated acoustic events.
- 3. **Digital Post-processing**: Uses correlator outputs as **features** for tasks such as speech recognition.

This talk will focus on current research (parts 1 and 2) and conclude with comments about (3).

- Introduction
- Template Correlation
- An Acoustic Transient Processor in VLSI:
 - Frontend Filterbank Systems
 - Template Correlation
 - Experimental Results
- A Trinary-Trinary Correlator
- Conclusion

Filterbank Frontend Systems

- Cochlear-model filters:
 - Mead and Lyon (1989)
 - Weimin Liu et al. "HEEAR" (1994)
 - ... and many others

- Unnikrishnan, Hopfield, and Tank (1991)
- Shihab Shamma (1994)
- Pineda, Edwards, and Cauwenberghs (1995)

A BiCMOS Current-Mode Filterbank Frontend

System implementation:

- Log-domain filters^{*} based on translinear circuits
- BiCMOS design for greatest dynamic range and linearity

Why a Current-Mode VLSI Implementation?

- Large dynamic range compared to voltage-mode circuits
- Dense circuit layouts
- Filter parameters (f_c , Q) are tunable over multiple decades
- μ W-range power consumption: good linearity at low power
- Most convenient format to interface to current-mode backend processors

*B. Gilbert (1975), D. Frey (1996), Y. Tsividis (1997), R. T. Edwards and G. Cauwenberghs (1998), and others

The Log-domain Bandpass Filter

Log-Domain Frontend Filterbank—Photomicrograph

The fifteen-channel bandpass filterbank fabricated in 1.2 μm technology inside a 2.2 mm \times 2.2 mm padframe.

Measured frequency response of one filter (4th-order bandpass) measured at three different center frequencies and three different *Q*-values.

Measured output of the envelope detector of all filter outputs, showing mismatch between channels.

- Introduction
- Template Correlation
- An Acoustic Transient Processor in VLSI:
 - Frontend Filterbank Systems
 - Template Correlation
 - Experimental Results
- A Trinary-Trinary Correlator
- Conclusion

The Acoustic Transient Processor Correlation Algorithm

$$c_{z}[\,t\,] = \sum\limits_{m=1}^{M}\sum\limits_{n=1}^{N}x[t-n,m]\,p_{z}[n,m]$$

Original Software Trials of the Transient Classifier Confusion Matrix for Cross-Validation Test Baseline Algorithm Results

Event	Bar	Book	Can	Dink	Door	Finger	Hand	Mallet	Shelf	Tub
Bar	28	0	0	0	0	0	0	0	0	0
Book	0	19	0	0	0	0	0	0	0	1
Can	0	0	27	0	2	0	0	0	0	0
Dink	1	0	0	25	0	0	1	1	0	0
Door	0	0	0	0	9	0	0	1	0	0
Finger	0	0	0	0	0	17	1	0	0	0
Hand	0	0	0	0	0	0	21	0	0	0
Mallet	0	0	0	0	0	0	0	12	0	0
Shelf	0	0	0	0	0	0	0	0	28	0
Tub	0	0	0	0	0	0	0	0	0	28

Statistics:

Total instances presented:	222
Correct:	214
Incorrect:	8
Accuracy:	96.4%

Template Correlation: Computational Requirements

- *M* = 32 frequency channels
- timestep = 1 ms
- N = 100 bins (timespan of 1/10 second)
- one correlation per timestep

>3 million multiply-accumulate operations per second per template

Implementation goals:

- minimize operations per timestep (modify algorithm)
- minimize power per operation (analog design)

Different Correlation Architectures

Method	Both	Binary	Both	Binary $(1, -1)$	Binary $(1,0)$	
	Cont.	Input	Binary	Template	Template	
One-to-One	96.40%			—	—	
Time Difference	85.59%	65.32%	59.46%	82.43%	81.98%	
Channel Difference	90.54%	53.60%	95.05%	94.59%	94.14%	
Center-Surround	92.79%	53.60%	95.05%	92.34%	92.34%	

Conclusion:

Best architectures use channel difference computation and binary template values and either binary or continuous-valued input.

Software Trials of the Transient Classifier Confusion Matrix for Cross-Validation Test Channel-differenced input and binary-valued template

Event	Bar	Book	Can	Dink	Door	Finger	Hand	Mallet	Shelf	Tub
Bar	27	0	0	0	1	0	0	0	0	0
Book	0	19	0	0	0	0	0	0	0	1
Can	1	0	22	0	4	0	0	0	1	0
Dink	1	0	0	26	0	0	1	0	0	0
Door	0	0	0	0	10	0	0	0	0	0
Finger	0	0	0	0	0	18	0	0	0	0
Hand	0	0	0	0	0	3	18	0	0	0
Mallet	0	0	0	0	0	0	2	10	0	0
Shelf	0	0	0	0	1	0	0	0	27	0
Tub	0	0	0	0	0	0	0	0	0	28

Statistics:

Total instances presented:	221
Correct:	205
Incorrect:	16
Accuracy:	92.7%

An Efficient Architecture for the Acoustic Transient Classifier

$$c_{z}[t] = \sum_{m=1}^{M} \sum_{n=1}^{N} (x[t-n,m] - x[t-n,m-1]) p'_{z}[n,m]$$
$$p'_{z}[n,m] = \begin{cases} 1 & (p_{z}[n,m] - p_{z}[n,m-1]) > 0\\ 0 & (p_{z}[n,m] - p_{z}[n,m-1]) \le 0 \end{cases}$$

ATP Chip Architecture—Static Memory Core Cell

ATP—Complete Chip Architecture

ATP Chip—Results

Simple template (left) detects the transient "can" (bottom left) but rejects the transient "snap" (bottom right).

Blue: numerical simulation. Green: measured chip response. Black: Residual error.

Chip measured power consumption: $50\,\mu\text{W}$

- Introduction
- Template Correlation
- An Acoustic Transient Processor in VLSI:
 - Frontend Filterbank Systems
 - Template Correlation
 - Experimental Results
- A Trinary-Trinary Correlator
- Conclusion