Time-Frequency Acoustic Processing and Recognition: Analysis and Analog VLSI Implementations

by

Robert Timothy Edwards

A dissertation submitted to The Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy.

Baltimore, Maryland

March, 1999

© Robert Timothy Edwards 1999

All rights reserved

Abstract

Time-frequency analysis techniques, such as wavelet decomposition and Gabor filtering, are a tool for efficient coding of short-term acoustical features, and so are fundamental to acoustic pattern classification and speech recognition.

This thesis addresses issues of efficiency and robustness in the design and implementation of acoustic signal processors and small-vocabulary speech recognition systems for applications where power dissipation and integration density are primary design constraints. We couple time-frequency signal representations with massively parallel architectures using analog VLSI technology to design compact special-purpose systems with power efficiency surpassing conventional DSPs.

We present the design of, and results from, several prototyped VLSI systems, including processors for time-frequency decomposition and template-correlation-based acoustic transient pattern classification. We present methods for automatically training a template correlator and discuss potential research directions for this architecture, including biological modeling and continuous-speech recognition.

Acknowledgements

In order of appearance, I would like to thank the cast of characters who inspired this thesis, either directly or indirectly:

My parents and sister, who taught me critical thinking, studying, and writing skills, and encouraged me to explore my universe in all forms: Art, music, literature, language, and science. In spite of all their efforts, I was enamored of computers and technology, and became an engineer.

Dr. Hisham Massoud at Duke University, who inadvertently launched me on the path of neuromorphic engineering by recommending and loaning to me a book by Carver Mead called *Analog VLSI and Neural Systems*, and who affected my choice of graduate schools by advising me that the top five electrical engineering programs in the country were, in order, "Stanford, Stanford, Stanford, Berkeley, and Berkeley."

Dr. Michael Godfrey at Stanford University, who enthusiastically encouraged me to pursue research in Analog VLSI. He and I, Boyd Fowler, and Neal Bhadkamkar put together an Analog VLSI research laboratory in the basement of Durand Building and held our own against the naysayers in the department.

My wife, Linglan, who shared with me the occasionally tortuous life of the married graduate student. Under mutual moral support, we kept roughly the same schedule from beginning to end of our respective theses. She beat me to it by a couple of months.

My thesis advisor, Dr. Gert Cauwenberghs, who was forced to bear the brunt of my moments of extreme aggravation that typically accompany thesis research.

All the people whose support, friendship, experiences and discussions have shaped many aspects of my research and this thesis: Among them Pamela Abshire, Andreas Andreou, Marc Cohen, Abbas El Gamal, Paul Furth, Wolfgang Himmelbauer, Mark Martin, Amjad Obeidat, Fernando Pineda, Philippe Pouliquen, Michael Sebert, Shihab Shamma, and many, many others.

Contents

Ack	nowledgements	ii
Abst	tract	iii
List	of Figures	vii
List	of Tables	xii
1 I 1 1	Introduction 1.1 Introduction 1.2 Mapping the Time-Frequency Plane 1.2.1 Current-mode filterbanks 1.2.2 Acoustic Transient Recognition 1.2.3 Analog VLSI implementation of the transient classifier 1.2.4 Overview: Learning and Continuous Speech Recognition	1 6 8 9 10 11
2 (Continuous Wavelet Transform	14
2	2.1 Infoduction to the 1-Dimensional Continuous wavelet Hansform	14
2	2.3 Gabor Logons and Wavelets	18
2	2.4 Complex Demodulation	20
2	2.5 Complex Demodulation in the Continuous Wavelet Processor	23
2	2.6 Post-processing	27
2	2.7 An Analog CWT Processor	28
2	2.8 Generating carrier sinusoids	29
2	2.9 Analog multiplication	30
2	2.10 Wavelet Gaussian Function	3(
2	2.11 Wavelet chip slice	34
2	2.12 Chip Specifications	34 24
2	2.15 Limitations of the Architecture	30
2	2.14 Variations on an Architecture	37
2	2.16 Details of the Bit-Sequence-Finding Algorithm	42
2	2.17 Sequence generation	44

	2.18	Results and implementation
	2.19	Modulation Multiplier
	2.20	Switch-Cap Wavelet Gaussian Function 50
	2.21	Output Time Multiplexing
	2.22	Wavelet chip slice
	2.23	Experimental Results
	2.24	Extensions of the Research 58
	2.25	Summary
3	Curi	rent-Mode Filterbank Frontend 62
	3.1	Time-Frequency Representations using Filterbanks
	3.2	Parallel Filterbanks for Transient Classification
	3.3	Current-Mode Filters for Current-Mode Applications
	3.4	High-Level Simulations of the Filterbank Frontend
	3.5	Introduction to Translinear Circuits and Log-domain Filtering
	3.6	Principles of log-domain synthesis
	3.7	First-Order Circuit synthesis 76
	3.8	Designing second-order sections 78
	3.9	Technology limitations for low-frequency filter design 83
	3.10	L avout Considerations for VI SU og-Domain Circuits
	3.10	Current Mode Circuits for Non Filtering Applications
	3.11	Signal Destification and Smoothing
	3.12 2.12	Signal Destifier
	2.13	Signal Peak Detector
	2.14	Signal Feak-Feak Delector 91 L 1. Normalization Array 04
	3.15	L-1 Normanization Array
	3.10	
	3.17	Summary
4	Acou	istic Transient Processing 106
	4.1	Introduction
		4.1.1 The Problem of Speech Recognition
		4.1.2 Acoustic Transients
	4.2	Algorithms
		4.2.1 Simplifying The Correlation Equation
	4.3	Simulations
		4.3.1 The Hopkins Electronic Ear (HEEAR) Processor
		4.3.2 Simulating the Acoustic Transient Baseline Algorithm
		4.3.3 Optimizing Correlation Algorithms
		4.3.4 Simulations of different zero-mean representations
		4.3.5 High-Level Simulations of ATP Mixed-Mode VLSI Hardware
		4.3.6 Optimization of the classifier using per-class gains
		4.3.7 System Robustness
		4.3.8 Research Directions
		439 Remarks 134
	4.4	Hardware Implementation of the Acoustic Transient Processor 135

		4.4.1	Current-switching Memory Array	135	
		4.4.2	Bucket Brigade Device	138	
		4.4.3	Circuit input section	140	
		4.4.4	Characterizations of the VLSI Hardware	141	
		4.4.5	Experimental Results	144	
		4.4.6	Summary	147	
	4.5	The Di	igital ATP	149	
	4.6	Digital	correlator custom VLSI architecture	149	
	4.7	Digital	correlator semicustom FPGA architecture	151	
	4.8	The Sv	witch-Capacitor Frontend	156	
	4.9	Experi	mental results of the trinary-trinary correlation hardware	161	
		4.9.1	Method of input segmentation	161	
		4.9.2	Method of template generation	163	
		4.9.3	Experimental Results	164	
_	_				
5	Lea	rning ar	1d Speech Recognition	171	
	5.1	Autom	atic Template Learning for Template-Based Correlation	171	
	5.2	Averag	ge-Value Templates	172	
	5.3	Detern	ninistic Methods: Statistical Component Analysis	174	
	5.4	Suppor		177	
	5.5	Heuris	tic Methods (Unnikrishnan/Hopfield)	178	
	5.6	Biolog	cally-Inspired Methods	183	
A	Line	earity of	f a Transconductance Amp	187	
R	Ma	FLAR C	ode for Sine Sequence Generation	190	
D	B 1	Comm	ientary	193	
	D .1	Comm		175	
С	Cor	relation	with Time Differentiation	195	
	C.1	Proof	of validity of the pipelined architecture	198	
•	a !			••••	
D	Sim	ulation	of the AIP Frontend	201	
	D.1	Comm	entary	207	
Е	Sim	ulation	of the ATP Correlator	209	
-	E 1	Comm	entary	212	
	2.1	Comm		_1_	
\mathbf{F}	Opt	imizing	per-class gains in the ATP	214	
	F.1	Comm	entary	219	
				•••	
Bi	Bibliography 2				
Vi	ta			227	
	~~~			/	

# **List of Figures**

1.1	Some mappings of the TF plane	7
2.1	Output sampling. Points marked '×' represent center of the time-frequency area	
	covered by that sampled output.	17
2.2	Frequency-time representation of the input as overlapping Gaussian filters	17
2.3	Gabor sine and cosine logons, or wavelets	19
2.4	Demodulation of an input $X$ in the frequency domain with a perfect sine wave $S$	
	and ideal modulation filter $H$	23
2.5	Complex demodulation (2 channels shown)	24
2.6	Complex modulation reconstruction (2 channels shown).	25
2.7	Circuit diagram of the frequency-division toggle flip-flops	29
2.8	Gilbert multiplier with cascodes.	30
2.9	Frequency-domain transfer function of the final output of $n$ cascaded lowpass filters	
	as a function of the number of stages $n$	32
2.10	Impulse response of the final output of $n$ cascaded lowpass filters as a function of	
	the number of stages $n$	32
2.11	n cascaded stages of a filter approximating a half-Gaussian function, using contin-	
	uous-time transconductance-C filters	33
2.12	Wavelet decomposition block diagram for a single sine/cosine pair	35
2.13	Wavelet reconstruction block diagram for a single sine/cosine pair	35
2.14	Wavelet Transform Chip block diagram.	36
2.15	Architecture of Moreira-Tamayo et al	38
2.16	The analog oscillator architecture of Lu et al. [26] containing a 2nd-order delta-	
	sigma modulator.	40
2.17	Top: Demodulation of an input $X$ in the frequency domain with a perfect sine wave	
	S and ideal modulation filter $H$ . Bottom: Demodulation of an input $X$ in the fre-	
	quency domain with an oversampled sine wave $S'$ using an ideal smoothing filter $G$	
	and modulation filter $H$	45
2.18	The oversampled sine sequence.	47
2.19	Optimized 64-bit oversampled sine sequence, first quadrant.	47
2.20	Frequency domain properties of the raw ( $\mathbf{o}$ ) and filtered ( $\mathbf{x}$ ) bit sequences	48
2.21	Use of Gray code to generate sine and cosine sequences	49
2.22	Multiplexing vs. Multiplying	50

2.23	Single discrete-time lowpass filter section.	52
2.24	A scheme for controlling time-multiplexing of the outputs.	53
2.25	Sixteen-channel architecture using the 7-to-5 frequency ratio.	54
2.26	The wavelet chip, block diagram.	55
2.27	Photomicrograph of the mixed-mode continuous wavelet transform processor, a	
	$4 \text{ mm} \times 6 \text{ mm}$ die size fabricated in a $2 \mu \text{m}$ CMOS p-well process	56
2.28	Signal demodulation using the wavelet chip. The top trace is the input signal. The	
	middle trace is the input multiplied by the binary sequence. The bottom trace is the	
	output after filtering.	57
2.29	Gaussian filter magnitude response: predicted and measured	58
2.30	Gaussian filter phase response: predicted and measured	59
2.31	Wavelet responses to isolated sine wave input.	59
2.32	An arbitrary tiling of the time-frequency plane.	60
3.1	Frontend filterbank system—block diagram.	64
3.2	Sampled-data input from a recording of an acoustic transient—that of a book being	
	dropped onto a desk.	67
3.3	Bandpass-filtered acoustic transient input using two cascaded second-order filters	
	on each channel.	69
3.4	Parallel filterbank output after rectification and smoothing of the acoustic transient	
	input signal across all frequency bands.	71
3.5	Translinear loop with common-base and common-emitter configurations	74
3.6	Filter pole formed using a transconductor.	76
3.7	First-order log-domain filter circuit.	77
3.8	Computing a current difference at a log-domain filter input. A) The underlying idea,	
	which is physically unrealizable. B) An equivalent working implementation	80
3.9	Bandpass structure formed from first-order sections.	81
3.10	An alternative common-emitter circuit generating $I'_{DC}$ (see text for discussion)	82
3.11	Complete circuit schematic for the second-order bandpass filter.	83
3.12	Another BiCMOS Log-domain bandpass filter, using the common-emitter configu-	
	ration for all feedback circuits.	84
3.13	Base compensation (B) eliminates undesirable behavior due to significant base cur-	
	rent which occurs in (A).	85
3.14	Complete circuit schematic for the second-order bandpass filter. Bipolar transistors	
	are minimum size, and MOS dimensions are indicated as $W/L$ in units of $\lambda = 0.6 \mu\text{m}$ .	86
3.15	Circuit of Figure 3.12, showing base compensation circuits, cascode connections,	
	and the $Q$ -generating circuit $\ldots$	87
3.16	Structure of a bandpass filterbank channel and stacking of channels to form the	
	whole filterbank.	89
3.17	Simplified schematic of the adaptive current full-wave rectifier.	91
3.18	Cascaded log-domain lowpass filters	92
3.19	Simple diode-based peak detector.	92
3.20	Behavior of the peak-peak detector.	94
3.21	Peak-peak detector circuit, simplified.	95
3.22	Peak-peak detector with cascodes, as fabricated.	96

3.23	L-1 normalization circuit, after Gilbert [50]	98
3.24	Measured magnitude response of the log-domain first-order lowpass filter from the	00
3 25	Measured magnitude response of one bandpass channel in the filterbank system	99
5.25	made of two cascaded second-order log-domain bandpass filters, over three tunings	
	of the center frequency.	101
3.26	Measured magnitude response of all bandpass channels in the filterbank system, as	
	measured at the output after peak-detection and smoothing	102
3.27	Measured center frequencies of all bandpass channels in the filterbank system (cir-	
	cles), compared to the ideal exponential spacing (solid line).	103
3.28	Photograph of the fifteen-channel bandpass filterbank fabricated in 1.2 µm technol-	
	ogy inside a 2.2 mm $\times$ 2.2 mm padframe	104
4.1	Template correlator, as a direct implementation of the baseline algorithm. Equa-	
	tion (4.1). $\ldots$	110
4.2	Template correlation.	111
4.3	Filterbank output after applying an L-1 normalization across all channels. A single	
	channel has been added to the system (top trace), containing the result of a constant	
	value less the instantaneous sum of the remaining channel values	113
4.4	Template correlator with pipelined architecture and multiplexors replacing the mul-	
	tipliers.	115
4.5	Values in the pipelined delay registers in the correlation algorithm simulation	116
4.6	Template correlator with [0,1] encoding of template values.	117
4.7	Block diagram of the temporal current correlator.	119
4.0 1 Q	Example HEEAR-processed transients	120
4 10	Example templates learned by the ATP algorithm	122
4.11	Example of a real-valued template.	123
4.12	The same template reduced to trinary values.	124
4.13	The same template reduced to binary values.	125
4.14	Effect of decreasing the number of time-bins.	132
4.15	Effect of white noise added to the correlator inputs	133
4.16	Block diagram of the temporal current correlator.	136
4.17	Efficient dynamic memory cell for the correlator array.	138
4.18	Details of the bucket brigade device (BBD).	139
4.19	A switched capacitor circuit to compute channel differences at the output	141
4.20	The complete correlator array including both bucket brigade devices. Representa-	
	tive MOS device sizes are given as $W/L$ in units of $\lambda = 0.6 \mu\text{m}$ .	142
4.21	Linearity between output voltage and input current.	143
4.22	Impulse response at each tap of the bucket brigade device.	144
4.23	Matching between devices throughout the template at 1 $\mu$ A input	145
4.24	Nationing between devices throughout the template at 100 nA input.	145
4.25	Photomicrograph of the acoustic transient correlator, a 2.2 mm $\times$ 2.2 mm die fabri-	146
		140

4.26	Measured correlation of repeated sounds "can" (left) and "snap" (right) with the	
	"can" template loaded into chip memory	148
4.27	Measured correlation of repeated sounds "can" (left) and "snap" (right) with the	
	"snap" template loaded into chip memory	148
4.28	Block diagram of the sequential digital correlator architecture	151
4.29	Memory allocation in the digital correlator SRAM.	153
4.30	SRAM address generator for the digital correlator.	154
4.31	Digital correlator controller state diagram, simplified	155
4.32	Serial digital correlator structure for one template	155
4.33	Digital ATP correlator system, configurable for up to sixteen templates	157
4.34	Switched-capacitor bandpass filterbank, single channel	160
4.35	Audio input circuit for the frontend system.	160
4.36	One board of the switched capacitor frontend filterbank, bandpass filtering and en-	
	coding the audio input into sixteen parallel channels	161
4.37	A mixed-signal method for detecting the onset of a transient event from the output	
	of an analog frontend filterbank.	162
4.38	A simple finite state machine which detects the onset of transient events in the	
	trinary-valued frontend filterbank output	163
4.39	Templates for twelve transient classes, determined from data obtained from the fron-	
	tend hardware. Frequency is on the $x$ -axis, with the lowest frequency channel on	
	the right, and time is on the y-axis, with the transient onset at the bottom of the	
	template. Colors correspond to trinary values as follows: $black = -1$ , white $= +1$ ,	
	gray = 0	165
4.40	System input and output for sound "bar" (left) and "book" (right). Top graph is the	
	frontend system output (32 channels); middle graph is the correlation output over	
	12 classes; bottom graph is the output of the segmenter showing both the segmented	
	transient and the optimal point of alignment	166
4.41	System input and output for sound "shelf" (left) and "tub" (right). Top graph is the	
	frontend system output (32 channels); middle graph is the correlation output over	
	12 classes; bottom graph is the output of the segmenter showing both the segmented	
	transient and the optimal point of alignment	167
<b>7</b> 1		170
5.1	Unnikrishnan, Hopfield, and Tank correlator architecture, block diagram.	179
5.2	Unnikrishnan <i>et al.</i> correlator simulation results on isolated digit recognition.	180
5.3	Response of architecture in simulation to the same input as Figure 5.2 but with white	100
~ 4	noise added to the input. The system remains robust in the presence of noise.	180
5.4	Gaussian kernels which diffuse the input in the Unnikrishnan <i>et al.</i> model.	181
5.5	Example of a biologically-inspired template encoding a falling tone of specific fre-	104
	quency and rate. <i>left:</i> Continuous-valued encoding. <i>right:</i> Trinary encoding	184
A.1	Simple differential pair transconductance amplifier	188
A.2	Linear error in a simple transconductance amplifier as a function of the differential	100
	input voltage.	189
		- 57

C.1	1 Block diagram of the temporal current correlator, using time-differencing operations				
	on the input	197			
C.2	Switch-cap time-differencing circuit.	199			
C.3	Time-differencing correlation architecture.	200			

### **List of Tables**

2.1	Technologies used for the Wavelet processors.	35
3.1	Measured filterbank characteristics.	100
4.1	Classes and descriptions of the recorded transient dataset	121
4.2	Confusion matrix for leave-one-out cross-validation loop, using the baseline algo-	
	rithm	124
4.3	Simulation results with different architectures	126
4.4	Confusion matrix for leave-one-out cross-validation loop, using binary (1,0) tem-	
	plates and channel differencing.	126
4.5	Simulation results for different methods of computing channel differences	127
4.6	System accuracy with and without per-class normalization.	131
4.7	Transistor, cell, and array sizes corresponding to Figure 4.16.	137
4.8	Left: logic for the binary-binary correlation operation. Right: logic for the trinary-	
	trinary correlation. "X" represents a don't-care condition	150
4.9	2-bit Sign-amplitude trinary representation of input and template values in the digi-	
	tal ATP. "X" represents a don't-care condition.	159
4.10	Offline recognition task: Cross-validation on the transient dataset using a non-real-	
	time segmenter.	168
4.11	Real-time recognition task: Cross-validation on the transient dataset using the sim-	
	ple finite state machine segmenter.	169
4.12	Real-time recognition task: Cross-validation on the transient dataset using the sim-	
	ple finite state machine segmenter. In this transient set, spurious transient events	
	were hand-tagged as "unknown" classes (denoted by a question mark)	170

### Vita

R. Timothy Edwards received the degree of Bachelor of Science in Electrical Engineering (BSEE) from Duke University, Durham, North Carolina in 1990, graduating Summa Cum Laude and with Honors. In 1992, he received the degree of Master of Science in Electrical Engineering (MSEE) from Stanford University, Stanford, California. In 1993, he came to Johns Hopkins University to pursue a Ph.D. degree in the department of Electrical and Computer Engineering, Whiting School of Engineering, under the direction of Professor Gert Cauwenberghs. He is currently employed as a senior staff researcher in the Space Department at the Johns Hopkins University Applied Physics Laboratory.