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Abstract

Time-frequency analysis techniques, such as wavelet deasition and Gabor filtering,
are a tool for efficient coding of short-term acoustical deas, and so are fundamental to acoustic
pattern classification and speech recognition.

This thesis addresses issues of efficiency and robustnabg idesign and implemen-
tation of acoustic signal processors and small-vocabuwgeech recognition systems for appli-
cations where power dissipation and integration dens#éypamary design constraints. We couple
time-frequency signal representations with massivelglfgrarchitectures using analog VLSI tech-
nology to design compact special-purpose systems with ipeffieiency surpassing conventional
DSPs.

We present the design of, and results from, several pratdtyfl Sl systems, including
processors for time-frequency decomposition and templatelation-based acoustic transient pat-
tern classification. We present methods for automaticediiping a template correlator and discuss
potential research directions for this architecture, udirig biological modeling and continuous-
speech recognition.
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